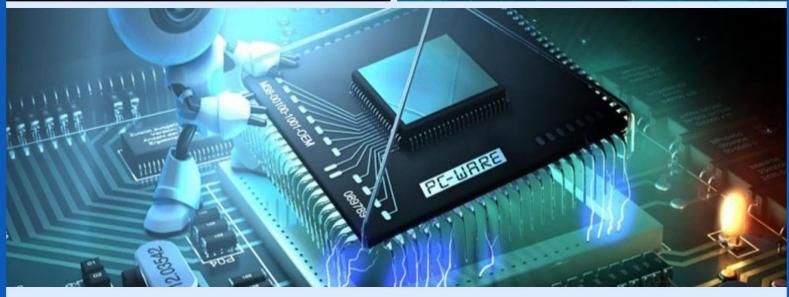
ISSN: 2320-0081


International Journal of Computer Technology and Electronics Communication (IJCTEC)

(A Biannual, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Volume 8, Issue 1, January-February 2025

| ISSN: 2320-0081 | www.ijctece.com || A Peer-Reviewed, Refereed, a Bimonthly Journal |

|| Volume 8, Issue 1, January – February 2025 ||

DOI: 10.15680/IJCTECE.2025.0801007

AI-Artificial Intelligence Powered Autonomous Vehicle Control System

P. Usha Sree, Dr. K. Naveen Kumar, G Ranjith Kumar, K. Manohar, G. Sampath, J. Sumfoniya

IV B. Tech, Department of Electronics and Communication Engineering, Pallavi Engineering College, Hyderabad, Telangana, India

Professor & HOD, Department of Electronics and Communication Engineering, Pallavi Engineering College, Hyderabad, Telangana, India

Assistant Professor, Department of Electronics and Communication Engineering, Pallavi Engineering College, Hyderabad, Telangana, India

IV B. Tech, Department of Electronics and Communication Engineering, Pallavi Engineering College, Hyderabad, Telangana, India

IV B. Tech, Department of Electronics and Communication Engineering, Pallavi Engineering College, Hyderabad, Telangana, India

IV B. Tech, Department of Electronics and Communication Engineering, Pallavi Engineering College, Hyderabad, Telangana, India

ABSTRACT: An autonomous vehicle navigation system enables vehicles to operate independently, navigating through environments without human intervention. This system integrates various technologies, including GPS, sensors, cameras, and mapping data, to perceive the surroundings and make informed decisions. It utilizes advanced algorithms to process data, detect obstacles, and plan optimal routes, ensuring safe and efficient travel. Autonomous vehicle navigation systems have the potential to revolutionize transportation, improving road safety, reducing congestion, and enhancing mobility for individuals with disabilities or limited mobility.

By leveraging artificial intelligence and machine learning, these systems can adapt to complex scenarios, learn from experience, and continuously improve their performance. A GPS receiver provides real-time location data, enabling the robot to continuously monitor its position and adjust its path accordingly to reach the target destination.

Once the robot arrives at the specified location, the system automatically sends a confirmation message—"Reached"—back to the user using the GSM module. A crystal oscillator ensures precise timing and synchronization of operations, while an LCD display (driven by an LCD driver) and LED indicators provide local status feedback for debugging or monitoring. The reset button allows for manual system restart when necessary, and the entire system is powered via a regulated power supply to ensure stable and reliable performance. This intelligent vehicle system can be extended with AI algorithms for optimized path planning, obstacle avoidance, and real-time decision-making. It is ideal for applications in autonomous delivery, military surveillance, emergency response, and smart logistics, where remote command and autonomous execution are critical.

KEYWORDS: Artificial Intelligence (AI), Autonomous Vehicles, Self-Driving Cars, Autonomous Driving, Driverless Technology, Vehicle Automation, Intelligent Transportation Systems (ITS)

I. INTRODUCTION

With the rapid advancement in automation and communication technologies, autonomous vehicle systems have gained significant attention for their potential in various fields. This project introduces an AI-powered autonomous vehicle control system using a PIC microcontroller, GPS, and GSM modules. The system allows remote location input via SMS, enabling the vehicle to navigate to a specified destination automatically and send a confirmation message upon arrival. It offers a compact, efficient, and scalable solution for applications in delivery, surveillance, and remote monitoring.

| ISSN: 2320-0081 | www.ijctece.com || A Peer-Reviewed, Refereed, a Bimonthly Journal |

|| Volume 8, Issue 1, January – February 2025 ||

DOI: 10.15680/IJCTECE.2025.0801007

An embedded system is a combination of software and hardware to perform a dedicated task. Some of the main devices used in embedded products are Microprocessors and Microcontrollers.

Microprocessors are commonly referred to as general purpose processors as they simply accept the inputs, process it and give the output. In contrast, a microcontroller not only accepts the data as inputs but also manipulates it, interfaces the data with various devices, controls the data and thus finally gives the result.

This project presents an AI-powered autonomous vehicle control system capable of receiving remote location commands and autonomously navigating to the specified destination. At the core of the system is a PIC microcontroller, which coordinates communication, navigation, and control operations. The system features a GSM modem that allows users to send destination coordinates via SMS. Upon receiving the message, the microcontroller parses the GPS coordinates and activates the navigation system.

II. EXISTING METHOD & PROPOSED METHOD

EXISTING METHOD

Autonomous vehicle control systems utilize various existing methods, including sensor-based control, which relies on LIDAR, cameras, radar, and ultrasonic sensors to detect and respond to surroundings. Machine learning-based control, including deep learning and reinforcement learning, enables vehicles to make decisions based on complex data patterns. Model-based control, such as model predictive control (MPC) and control theory, uses mathematical models to predict and optimize vehicle behavior. Hybrid approaches, including sensor fusion and multi-modal sensing, combine data from multiple sensors to improve accuracy and robustness. These methods work together to enable autonomous vehicles to perceive their surroundings, make decisions, and control their movements safely and efficiently.

However, if you stop on a breakpoint when your system is controlling real world hardware (such as a motor), permanent equipment damage can occur. As a result, people doing embedded programming quickly become masters at using serial IO channels and error message style debugging.

2.1.3 Resources:

PROPOSED METHOD

A proposed method for autonomous vehicle control systems could involve integrating multiple sensing modalities with advanced machine learning algorithms, such as deep reinforcement learning, to enable more accurate and efficient decision- making. This approach could also incorporate real-time data processing and edge computing to reduce latency and improve responsiveness. Additionally, the proposed method could prioritize safety and security, incorporating multiple redundancies and fail-safes to ensure reliable operation in various environments and scenarios. By building on existing methods and incorporating new technologies and techniques, autonomous vehicle control systems can become even more sophisticated and effective.

 $| \ ISSN: 2320\text{-}0081 \ | \ \underline{www.ijctece.com} \ \| A \ Peer-Reviewed, \ Refereed, \ a \ Bimonthly \ Journal \ |$

| Volume 8, Issue 1, January – February 2025 |

DOI: 10.15680/IJCTECE.2025.0801007

III. BLOCK DIAGRAM

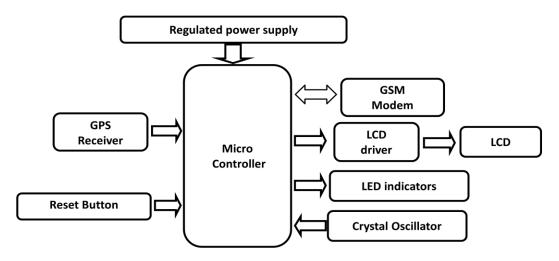
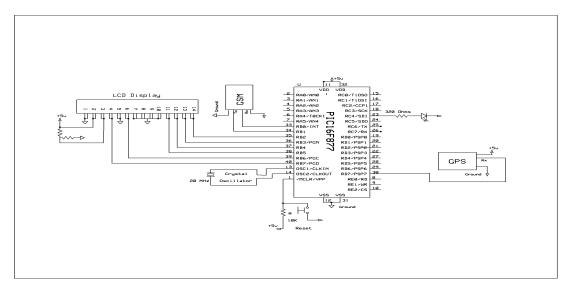



Fig: Block Diagram

Schematic Diagram of AI Powered Autonomous Vehicle Control System

IV. ADVANTAGES AND DISADVANTAGES

Autonomous Vehicle Control Systems (AVCS) offer numerous advantages across various domains, including safety, efficiency, and convenience. Here's a breakdown of their key advantages:

Enhanced Safety & Reduced Risk to Personnel

Protects human lives in dangerous operations: UGVs can handle high-risk tasks—like reconnaissance, bomb disposal, mine detection, or convoy escort—instead of soldiers.

Reduces battlefield casualties: Over half of combat injuries occur during supply missions; autonomous systems can safely undertake these convoys

Continuous & Scalable Operations

24/7 readiness: Unmanned systems aren't subject to fatigue, shift changes, or morale issues—they can operate tirelessly and consistently.

| ISSN: 2320-0081 | www.ijctece.com | A Peer-Reviewed, Refereed, a Bimonthly Journal |

| Volume 8, Issue 1, January – February 2025 |

DOI: 10.15680/IJCTECE.2025.0801007

Force-multiplying effects: A single operator can supervise multiple vehicles (e.g., one overseeing five TerraMax UGVs) and control swarms of vessels (e.g., 10+ autonomous boats). Improved Efficiency & Cost Savings

Reduction in operational costs

No need for expensive pilot training or large logistical tails; autonomy reduces training, support staff, and sustainment costs

Optimized logistics: Automated convoys support 24/7 delivery, use efficient routing and platooning to cut fuel consumption by up to 40%.

Superior Mission Effectiveness & Precision

Faster reaction and decision-making: AI-powered systems process sensor data (LiDAR, radar, cameras) in real time for rapid threat detection and reaction.

Accurate execution: Consistent, repeatable missions (e.g., surveillance, targeted strikes, convoy formation) improve precision and reduce human error.

Greater Situational Awareness & Data Integration

Enhanced sensing and coordination: Vehicles use advanced sensors and UAV/naval UGV networks to gather and relay battlefield data to commanders faster

Collaborative behavior: Swarming systems—like naval robot boats—can detect and classify threats, coordinate actions, and delegate tasks without preprogramming

DISADVANTAGES

Safety and Reliability Concerns

System Failures: Hardware or software glitches can lead to dangerous situations.

Difficult Edge Cases: AVs struggle with complex, unpredictable scenarios (e.g., emergency vehicles, erratic pedestrians, poor weather).

Cybersecurity Threats: Autonomous vehicles are vulnerable to hacking or system breaches, which could be catastrophic.

High Development and Maintenance Costs

Expensive Technology: Sensors (LiDAR, radar, cameras), high-performance computers, and advanced AI systems are costly. Infrastructure Upgrades: Roads, traffic systems, and communication networks may require updates to support AVs.

Job Displacement

Transort Sector Jobs at Risk: Drivers in trucking, taxis, delivery services, etc., could be replaced, leading to widespread unemployment.

Economic Disruption: Industries that rely on human drivers could face massive shifts.

V. APPLICATIONS

Personal Transportation

Self-driving Cars: Provide safer, more convenient travel for individuals and families.

Ride-hailing Services: Autonomous taxis (e.g., Waymo, Cruise) offer on-demand transportation without human drivers.

Freight and Logistics

Autonomous Trucks: Used for long-haul freight to reduce driver fatigue, increase efficiency, and lower shipping costs.

Warehouse Robots & Delivery Vans: AVCS optimize last-mile delivery using autonomous robots or small delivery vehicles.

IJCTEC© 2025

| ISSN: 2320-0081 | www.ijctece.com || A Peer-Reviewed, Refereed, a Bimonthly Journal |

|| Volume 8, Issue 1, January – February 2025 ||

DOI: 10.15680/IJCTECE.2025.0801007

Public Transportation

Autonomous Buses and Shuttles: Operate on fixed routes in urban environments, campuses, or airports, improving accessibility and reducing costs.

On-demand Transit Systems: Flexible, AV-driven public transport that adapts to rider demand in real time. Industrial and Agricultural Use

Mining and Construction Vehicles: Autonomous haul trucks, bulldozers, and loaders improve safety and productivity in hazardous environments.

Smart Farming: Tractors and harvesters with AVCS enable precision farming, improving crop yields and reducing labor dependency.

Emergency and Military Applications

Unmanned Rescue Vehicles: Used in hazardous areas (e.g., fires, chemical spills, disaster zones) to deliver aid or evacuate people.

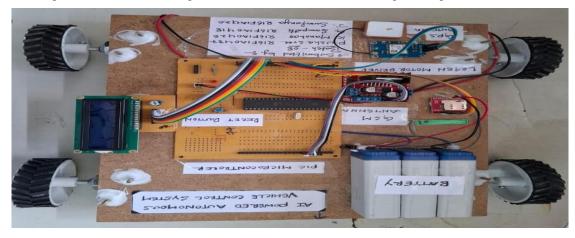
Autonomous Military Vehicles: Deployed for surveillance, logistics, and even combat support, reducing risk to human soldiers.

Retail and Consumer Services

Autonomous Delivery Robots: Small wheeled robots deliver groceries, meals, and packages in urban areas (e.g., Starship, Nuro).

In-Store AV Systems: Robotic carts or assistants help customers navigate stores or automate inventory management.

Accessibility and Special Needs

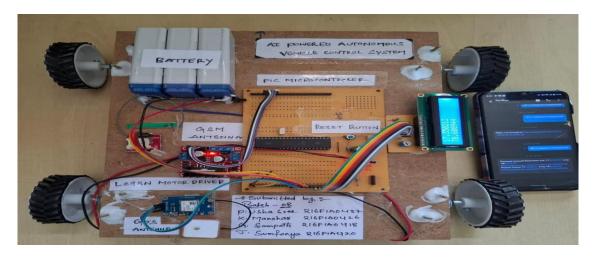

Mobility Solutions for the Elderly and Disabled: AVCS vehicles provide independence for those unable to drive due to physical or cognitive limitations.

Space Exploration

Autonomous Rovers and Landers: Used by NASA and other space agencies for exploring planets, moons, and asteroids without direct human control.

VI. RESULT

The Autonomous Vehicle Control System is a revolutionary technology that enables vehicles to operate safely and efficiently without human intervention. By leveraging advanced AI algorithms, sensor fusion, and real-time processing, these systems can perceive their surroundings, make informed decisions, and navigate complex environments.


Result Before Power Supply

| ISSN: 2320-0081 | www.ijctece.com || A Peer-Reviewed, Refereed, a Bimonthly Journal |

|| Volume 8, Issue 1, January – February 2025 ||

DOI: 10.15680/IJCTECE.2025.0801007

Result After Power Supply

The result is a significant improvement in road safety, reduced accidents, and enhanced mobility for the elderly and disabled. Additionally, autonomous vehicles can optimize traffic flow, reduce congestion, and improve fuel efficiency, leading to a more sustainable and efficient transportation system. With ongoing advancements in AI and computer vision, the potential for autonomous vehicles to transform the transportation industry, is vast & promising.

VII. CONCLUSION

Integrating features of all the hardware components used have been developed in it. Presence of every module has been reasoned out and placed carefully, thus contributing to the best working of the unit. Secondly, using highly advanced IC's with the help of growing technology, the project has been successfully implemented. Thus the project has been successfully designed and tested. The development of autonomous vehicle control systems has witnessed rapid advancements, driven by the need for safer, more efficient, and intelligent transportation. Traditional control methods such as PID, LQR, and MPC have laid a strong foundation due to their predictability and mathematical rigor. However, these methods often struggle in dynamic, uncertain environments that characterize real- world driving.

Recent trends show a clear shift toward AI-based approaches like deep reinforcement learning and imitation learning, offering greater adaptability and the potential for end-to-end learning. Yet, these methods face challenges in terms of interpretability, safety assurance, and data dependency. Meanwhile, hybrid control architectures are emerging as a promising solution, combining the reliability of classical methods with the flexibility of learning-based systems. Despite significant progress, key challenges remain — including real-time performance under computation constraints, robust decision-making in complex environments, and seamless integration with perception and localization systems. Future research should focus on developing safe, explainable, and generalizable control frameworks, capable of handling diverse driving scenarios under varying environmental conditions. Ultimately, the path to full autonomy lies in interdisciplinary collaboration, combining control theory, machine learning, sensor fusion, and robust systems en

REFERENCES

[1] Dr. KOMMU NAVEEN, Dr. R.M.S PARVATHI, on "A Review of Deep Learning Applications for Speech Processing Improvement & Applications" "Journal of Telecommunication, Switching Systems and Networks (JOTSSN)" | ISSN: 2454-637, p-ISSN: 2455-638| www.jotssn.com | Impact Factor: 7.569| || Volume 9, Issue 2, September 2022 || | DOI: DOI (Journal): 10.37591/JoTSSN/|http://engineeringjournals.stmjournals.in/index.php/JoTSSN/index

[2]Dr. KOMMU NAVEEN, Dr. R.M.S Parvathi, on "A Comprehensive Review On Machine Learning Applications of Convolutional Neural Networks to Medical Image Analysis" at 'International Conference on Robotics and Communication Technology-ICRCT-2022)' Page No: 50-57, ISSN: 2708-1079; IC Value: 45.98; Impact Factor: 7.379; VOLUME-03, ISSUE-1; 4th January, 2022. URL:https://doi.org/10.46379/jscer.2022.030104

[3]Hatice Cinar Akakin and Metin N. Gurcan, "Content Based Microscopic Image Retrieval System for Multi-Image Queries", IEEE Transactions On Information Technology In Biomedicine, VOL. 16, NO. 4, JULY 2012

[4]Yong-Hwan Lee and Sang-Burm Rhee, Bonam Kim, "Content- based Image Retrieval Using Wavelet Spatial-Color and Gabor Normalized Texture in Multi-resolution Database", 978-0- 7695- 4684-1/12 \$26.00 © 2012 IEEE, DOI 10.1109/IMIS.2012.98

| ISSN: 2320-0081 | www.ijctece.com || A Peer-Reviewed, Refereed, a Bimonthly Journal |

|| Volume 8, Issue 1, January – February 2025 ||

DOI: 10.15680/IJCTECE.2025.0801007

[5]Dr. KOMMU NAVEEN, Dr. R.M.S Parvathi, on "Contract and Feature Extraction of CBIR Method Using Soft Computing Techniques in Machine Learning" at 'Journal of Instrumentation Technology and Innovations)' Page No: 17-27; ISSN (PRINT): 2249-4731; ISSN (ONLINE): 2347-7261 VOLUME-12; ISSUE-01; April-May -2022. DOI(journal):10.37591/JoITI, URL: http://www.engineeringjournals.stmjournals.in/index.php/JoITI/index.

[6]S. Mangijao Singh, K. Hemachandran, "Content-Based Image Retrieval using Color Moment and Gabor Texture Feature", IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012; ISSN (Online): 1694-0814

[7]Dr. K. Naveen Kumar, Dr. M. B. Raju, Prof. A. Sridhar, IJRAR August 2024, Volume 11, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138) IJRAR24C2120, International Journal of Research and Analytical Reviews (IJRAR) 2024 IJRAR August 2024, Volume 11, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138).

[8]Kanchan Saxena, Vineet Richaria, Vijay Trivedi, "A Survey on Content Based Image Retrieval using BDIP, BVLC AND DCD", Journal of Global Research in Computer Science, Vol.3, No. 9, September 2012, ISSN-2229-371X.

[9]Dr. K. Naveen Kumar, Dr. M. B. Raju, Prof. A. Sridhar on International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 12 Issue VIII Aug 2024- Available at www.ijraset.com.

[10]Dr. KOMMU NAVEEN, Dr. R.M.S Parvathi, on "A Review On Content Based Image Retrieval Systems Features derived by Deep Learning Models" at 'International Journal For Research In Applied Science And Engineering Technology (IJRASET)' Page No: 42-57, ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429; VOLUME-09, ISSUE-XII; November- 2021. URL:www.ijraset.com/index.html/doi.org.