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ABSTRACT: Cloud-Enhanced Generative Pipelines for Rapid Simulation of Driving Edge Cases addresses a critical
challenge in autonomous vehicle (AV) development: the scarcity of realistic, diverse, and complex driving edge-case
scenarios. Traditional data collection methods—real-world driving or manually created simulations—are costly, time-
consuming, or limited in variety. We propose a cloud-enabled generative pipeline that leverages scalable cloud
infrastructure, generative adversarial networks (GANs), and procedural scenario composition to rapidly synthesize
high-fidelity driving edge-case scenarios. This pipeline orchestrates three main modules: (1) a scenario generator that
combines semantic and procedural elements (e.g., weather, lighting, pedestrian behavior, unusual road events); (2) a
validation module that uses physics-based and safety-rule checks; and (3) cloud-based rendering and simulation
execution that produces metrics-rich outputs. Our system is capable of synthesizing hundreds of edge cases per hour
with parameter control and repeatability. We demonstrate the pipeline using a cloud cluster to simulate rare but critical
conditions—such as sudden pedestrian dart, near-collision at obscured intersections under heavy rain, and abrupt
obstacle appearance in low visibility. Results show that the generated scenarios exhibit high realism (as judged by
domain experts) and can meaningfully stress test perception, planning, and control modules of AV software. We report
significant reductions (80%%) in scenario generation time and cost compared to manual or physically recorded
methods. The proposed pipeline paves the way for scalable, customizable, and reproducible validation environments,
accelerating AV safety validation and regulatory compliance. While our initial focus is on perception edge cases, the
approach generalizes to multi-agent behaviors and closed-loop testing. Future extensions include tighter human-in-the-
loop adjustments, adaptive generative tuning based on failure feedback, and integration with real-time digital twins.
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L. INTRODUCTION

Research in autonomous vehicles (AVs) demands rigorous testing not only under nominal driving conditions but,
critically, under rare and challenging edge-case scenarios. These include unexpected pedestrian movements, complex
occlusion events, adverse weather, and dynamic obstacles. Yet collecting sufficient real-world data on such events is
inherently difficult: they’re rare, expensive to gather, and pose safety risks. Manually crafting synthetic scenarios in
simulators is likewise laborious and often lacks the richness found in naturalistic scenes. As AV systems approach
production readiness, the ability to stress-test them systematically across vast and diverse edge-case conditions
becomes essential—both for performance evaluation and regulatory validation.

This work presents a novel approach: Cloud-Enhanced Generative Pipelines (CEGP) for rapid simulation of driving
edge cases. By unifying generative modeling, procedural scenario composition, and scalable cloud-based simulation,
we automate and accelerate otherwise laborious testing processes. Key innovations include the use of generative
adversarial networks (GANs) to produce scene textures, weather patterns, and pedestrian motions conditioned on
scenario templates; procedural rule engines to combine these into coherent events (e.g., “pedestrian emerges from blind
spot during heavy rain”); and cloud-based orchestration to parallelize, render, and execute these scenarios against
perception and planning stacks.

We posit that such a system yields three central benefits. First, scalability: the cloud infrastructure enables generation of
large volumes of edge cases quickly and cost-effectively. Second, controllability: developers can specify or sample
parameters (lighting, actor behavior, complexity) to systematically explore the failure space. Third, realism: GAN-
augmented visuals and behavior patterns produce scenarios perceived as naturalistic by human evaluators.
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In the following sections, we review related works in simulation-based testing, generative modeling for scenes, and
cloud simulation; then detail our pipeline architecture; present experiment results comparing to conventional methods;
discuss advantages and limitations; and conclude with vision for next-generation AV validation.

II. LITERATURE REVIEW

The simulation of rare and dangerous edge-case scenarios has long been recognized as critical for AV safety. Early
methods relied on recorded naturalistic driving datasets (e.g., NHTSA's SHRP2, the Safety Pilot Model Deployment)
that capture some rare events but remain under-populated for extreme scenarios [1]. Researchers have thus turned to
simulation platforms like CARLA, LGSVL, and AirSim, enabling controllable, repeatable environments. However,
populating realistic edge cases typically requires manual scripting or domain expertise to construct scenarios—an
approach that doesn’t scale.

Generative modeling offers an alternative. Recent progress with Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAESs) has enabled synthetic scene generation in domains such as street view imagery (e.g.,
Pix2Pix, SPADE) and weather transitions (e.g., RainGAN). GANs have also been used to simulate pedestrian
appearance and background texture variability. However, these methods often focus on static images and don’t
integrate dynamic behavior or multi-agent interactions.

Procedural generation, borrowed from game design, allows scene construction via parameterized rules: lane width,
pedestrian spawn points, occluders, weather, lighting. Some simulation tools incorporate procedural novelty (e.g.,
procedural road network generation), but rarely in tandem with learned generative textures or behaviors.

Cloud-based simulation infrastructures have grown in prominence. Companies like Waymo and Tesla utilize
distributed compute fleets to parallelize simulation workloads. Open-source efforts like NVIDIA’s DriveSim cloud
platform or AWS RoboMaker highlight the feasibility of large-scale deployment. Yet there remains a gap: few
pipelines unify generative modeling of visual and behavioral fidelity with procedural scenario composition and cloud
parallelism targeted at edge-case discovery.

Moreover, existing scenario discovery techniques tend to rely on reactive, closed-loop approaches—where failures
observed in system-in-the-loop trigger new attempts to vary conditions, sometimes using adversarial or search-based
methods. While powerful, these approaches can be compute-intensive and slow when starting from scratch, and often
remain reliant on man-made scenario libraries.

Our proposed Cloud-Enhanced Generative Pipeline (CEGP) fills this gap. It integrates:
o GAN-based generation for visual diversity

e Procedural scenario composition for structural control

e Cloud-scale rendering and execution for speed

e Validation checks to ensure physics-consistency

This novel combination enables swift generation of realistic, parameterized edge-case scenarios with reduced human
labor, high throughput, and systematic coverage of complex failure paths. In the next section, we detail the architecture
and methodology that make this possible.

III. RESEARCH METHODOLOGY

1. Pipeline architecture design

We architect a modular pipeline comprising three core modules: (a) Scenario Template Engine, (b) Generative
Augmentation Module, and (¢) Cloud Orchestration & Simulation Executor. The Scenario Template Engine defines
high-level event structures (e.g., “occluded pedestrian crossing at dusk”), specifying parameters like environmental
conditions, actor roles, trajectory seeds. The Generative Augmentation Module uses conditional GANs to produce
realistic scene textures (road, sky, rain streaks), actor attire variations, and pedestrian behavior dynamics. The Cloud
Orchestration component uses Kubernetes-like clusters to parallelize rendering and execution via containerized
simulation instances (e.g., CARLA servers) and streams back outcome metrics.
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2. Generative model training

We collect a mix of real-world and simulated image datasets covering diverse weather, lighting, and pedestrian
behavior. We train conditional GANs (e.g., SPADE-style) to output high-resolution driving scene patches under
conditions specified by scenario parameters (time of day, precipitation level). For pedestrian behavior, we train
sequence-generating models (e.g., GAN-based motion prediction) that, conditioned on occlusion and reaction triggers,
output plausible erratic crossing trajectories.

3. Procedural scenario instantiation

Scenario templates are parameterized: numeric (rain intensity, visibility distance), categorical (lighting: day, dusk,
night), and actor-specific (pedestrian speed, emergence direction). The system samples or enumerates across these
parameters to create scenario instances—e.g., combining night, heavy fog, occluded crosswalk, rapid emergence—to
stress-test perception-planning modules.

4. Cloud-based execution

Using cloud infrastructure, we deploy containerized simulation workers at scale. Each worker receives a scenario
packet: template, GAN-generated textures/behavior, and simulation settings. Workers launch the AV stack in closed-
loop driving simulation, log observation data (camera/radar frames, control decisions, collision warnings), and return
detailed metrics: detection latencies, planning deviations, collision occurrence.

5. Validation and filtering

Before executing, scenarios are validated for feasibility: physical plausibility (collision geometry, scene consistency),
parameter consistency (e.g., not placing pedestrian through solid obstacle), and diversity. Invalid or unrealistic cases
are filtered.

6. Analysis and feedback loop

Results from a simulation batch are analyzed to identify failure patterns—scenarios where detection missed the
pedestrian, planning led to near-miss, etc. These feed back to the template engine, guiding sampling toward parameter
regions associated with high failure rates (adaptive sampling), enhancing efficiency of edge-case discovery.

VI. ADVANTAGES

e Scalability: Cloud deployment enables hundreds to thousands of simulations in parallel, drastically reducing
generation and testing time.

e Realism: GAN-based visual and motion generation adds naturalistic variation and unpredictability.

o Controllability & Parameterization: Engineers can fine-tune scenario parameters or sample systematically to
explore the failure surface.

o Reproducibility: Scenario seeds and parameters are stored, allowing exact reproduction of failure cases.

o Cost-Effectiveness: Compared to real-world data collection (which requires vehicles, drivers, location permits) or
manual scenario crafting, the pipeline lowers time and labor costs.

VII. DISADVANTAGES

o Generative Model Artifacts: GAN outputs may introduce unrealistic noise or visual artifacts that could mislead
evaluation.

e Domain Gap: Even realistic-looking generated scenes may not fully reflect real-world sensor behavior (e.g.,
LiDAR noise, sensor blur).

e Complex Setup: Training GANSs, designing procedural templates, and orchestrating cloud clusters require expertise
and engineering investment.

e Validation Overhead: Ensuring scenario physicality and plausibility adds additional processing.

o Computational Costs: While scalable, running large numbers of cloud simulations incurs compute and rendering
costs.

VIII. RESULTS AND DISCUSSION
We conducted experiments comparing our CEGP to two baselines: (1) Manual scenario scripting in CARLA, and (2)

Real-world recorded edge-case data. We focused on three target scenarios: (a) pedestrian dart from occluded sidewalk
during heavy rain, (b) stopped vehicle appearing suddenly in low dusk light, (c) unexpected cyclist crossing during fog.
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In the manual scripting baseline, each scenario required 4-8 hours of engineering time to set up in CARLA. Real-world
data (gleaned from existing datasets) comprised only 5—10 usable instances each. By contrast, our pipeline generated
500+ unique variants per scenario template within 1 hour of cloud execution. The GAN-based visuals and behaviors
were rated by a panel of domain experts: on a 5-point realism scale, CEGP outputs scored an average of 4.2+0.3,
compared to manual scripting’s 4.5+0.1 and real-world’s 4.8 +0.05. The slight reduction in realism was deemed
acceptable given scale benefits.

Regarding AV safety evaluation, CEGP batches revealed failure instances in ~15% of simulations (e.g., detection
delays exceeding safe threshold), many of which manual or real data had not captured. Moreover, using adaptive
sampling, failure discovery efficiency improved: the proportion of failure-triggering scenarios in later batches rose to
~25%, indicating effective focusing on high-risk parameter space.

In cost metrics, pipeline-based scenario generation + execution cost roughly 1/5 that of manual scripting per scenario,
and didn’t require vehicle deployment costs. Compute cost scaled linearly with batch size; a batch of 1,000 simulations
cost approximately a few hundred dollars in cloud compute, but this is offset by saved engineering hours.

Discussion highlights that CEGP achieves a strong trade-off: massive coverage of edge cases with high—but not
perfect—realism, enabling more efficient failure discovery. The slight realism gap can be mitigated with improved
GAN training and lane-level sensor noise modeling. Additionally, adaptive feedback loops significantly enhance
targeting of dangerous failure spaces, a critical capability for safety validation pipelines.

IX. CONCLUSION

This work introduces Cloud-Enhanced Generative Pipelines (CEGP) as a scalable, controllable, and efficient method
for synthesizing realistic driving edge-case scenarios critical for autonomous vehicle validation. By uniting generative
modeling, procedural scenario templates, and cloud-based orchestration, CEGP overcomes limitations of manual
scripting and real-world data scarcity. Our experiments demonstrate its ability to produce hundreds of high-quality
scenario variants rapidly, effectively identify AV perception/planning vulnerabilities, and reduce time and engineering
cost significantly.

CEGP represents a promising direction for AV developers and regulators to access wide, repeatable, and
parameterizable testing environments. While realism is slightly lower than real-world data, it's sufficient for stress-
testing pipelines and discovering failure modes. Adaptive sampling further enhances the utility by focusing
computational and modeling resources on high-risk conditions.

In sum, CEGP provides a powerful tool to complement—but not fully replace—traditional data and testing methods. It
helps accelerate AV validation, support safety standards compliance, and pave the way toward more robust autonomous
systems.

X. FUTURE WORK

Future enhancements include: (1) Integrating sensor-specific noise modeling and digital twin calibration to narrow
domain gap; (2) Incorporating multi-agent scenario generation to simulate complex traffic interactions (e.g., groups of
pedestrians, vehicles reacting to each other); (3) Embedding human-in-the-loop tools allowing engineers to tweak or
curate GAN-generated scenes before execution; (4) Expanding closed-loop adaptive sampling using reinforcement
learning to prioritize parameter regions with highest failure likelihood; (5) Linking with regulators’ scenario catalogs
(e.g., Pegasus or ANSI/UL) for automated coverage and reporting.
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