

Review Article
Open Access

Enhancing VoIP Quality in the Era of 5G and SD-WAN

Abhishek Singh

USA

ABSTRACT

Voice over Internet Protocol (VoIP) has become a cornerstone of modern communication, offering flexibility and cost savings over traditional telephony. However, VoIP quality is highly susceptible to network congestion, which can lead to increased latency, jitter, and packet loss, thereby degrading the user experience. This paper investigates the potential of emerging technologies, specifically 5G networks and Software-Defined Wide Area Networks (SD-WAN), to mitigate the adverse effects of network congestion on VoIP quality.

The deployment of 5G networks promises significant improvements in bandwidth, latency, and reliability, which are critical for maintaining high-quality VoIP calls. By leveraging the enhanced capabilities of 5G, such as ultra-reliable low-latency communication (URLLC) and massive machine-type communication (mMTC), VoIP services can achieve unprecedented levels of performance and reliability.

Similarly, SD-WAN technology offers dynamic traffic management and optimization, allowing for more efficient use of network resources. SD-WAN can prioritize VoIP traffic, manage congestion in real-time, and provide seamless failover capabilities, ensuring consistent call quality even under varying network conditions.

This paper presents a comprehensive review of the current state of VoIP quality enhancement techniques, explores the potential of 5G and SD-WAN to address VoIP quality challenges, and outlines a roadmap for the integration of these technologies to deliver a superior VoIP experience in the era of digital transformation.

***Corresponding author**

Abhishek Singh, USA.

Received: May 02, 2022; **Accepted:** May 09, 2022; **Published:** May 16, 2022

Keywords: VoIP Technology, SDWAN, 5G, Network Congestion, Performance, Network Protocols

that can effectively mitigate the impact of network congestion on VoIP quality [6].

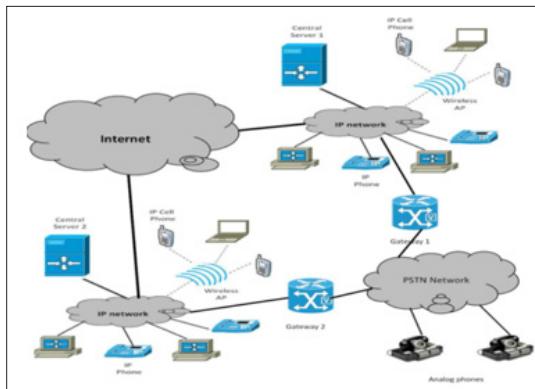
Objectives

This paper aims to investigate the potential of emerging technologies, specifically 5G networks and Software-Defined Wide Area Networks (SD-WAN), to enhance VoIP quality by addressing network congestion. The specific objectives are:

1. To provide an overview of VoIP technology and the key Quality of Service (QoS) metrics that determine VoIP performance.
2. To analyze the causes and effects of network congestion on VoIP quality.
3. To explore the capabilities of 5G networks in reducing latency, jitter, and packet loss for VoIP applications.
4. To examine how SD-WAN technology can dynamically manage network traffic to prioritize VoIP and mitigate congestion.
5. To present case studies and empirical data demonstrating the effectiveness of 5G and SD-WAN in improving VoIP quality.
6. To discuss future trends and research directions in the context of VoIP quality enhancement.

VoIP Technology Overview
How VoIP Works

Voice over Internet Protocol (VoIP) technology enables voice communication over the internet by converting analog voice signals


into digital data packets. These packets are transmitted over IP networks, such as the internet or private data networks, and then reassembled into audio signals at the receiving end [7]. The process involves several key components and steps:

- 1. Analog-to-Digital Conversion:** When a user speaks into a VoIP-enabled device, the analog voice signal is captured by a microphone and converted into a digital signal using an analog-to-digital converter (ADC).
- 2. Compression and Encoding:** The digital signal is then compressed and encoded using codecs (coder-decoder) to reduce the amount of data that needs to be transmitted. Common codecs include G.711, G.729, and Opus, each offering different trade-offs between audio quality and bandwidth usage.
- 3. Packetization:** The encoded voice data is divided into small packets, each containing a portion of the audio stream along with header information that includes the source and destination IP addresses, sequence numbers, and timestamps.
- 4. Transmission:** The packets are transmitted over the IP network using protocols such as the Real-Time Transport Protocol (RTP) for delivering audio and video over IP networks, and the Session Initiation Protocol (SIP) for establishing, managing, and terminating VoIP calls.
- 5. Routing and Switching:** The packets travel through various network devices, such as routers and switches, which direct them towards their destination. This process can involve multiple hops across different networks.
- 6. Reassembly and Playback:** At the receiving end, the packets are reassembled in the correct order based on their sequence numbers. The digital data is then decoded and decompressed back into an analog signal using a digital-to-analog converter (DAC), which is played back through a speaker or headset.

Network Congestion and Its Impact on VoIP

The quality of VoIP communication is heavily influenced by network conditions, and network congestion is one of the primary factors that can degrade VoIP performance. Network congestion occurs when the demand for network resources exceeds the available capacity, leading to a slowdown in data transmission. This can happen due to various reasons, such as a high volume of traffic, limited bandwidth, inefficient network management, or sudden spikes in usage. When a network becomes congested, data packets experience delays, and some packets may even be dropped, resulting in degraded performance for applications relying on real-time data transmission, such as VoIP.

In the context of VoIP, network congestion can severely impact the quality of voice calls. VoIP relies on the timely delivery of voice packets to maintain a smooth and coherent conversation. When the network is congested, these packets can be delayed, arrive out of order, or be lost entirely, leading to noticeable degradation in call quality [8].

Figure 1: VoIP Architecture

Impact on VoIP Quality

Network congestion affects VoIP quality through three primary metrics: latency, jitter, and packet loss.

- 1. Latency:**
 - Definition:** Latency, or delay, is the time it takes for a voice packet to travel from the sender to the receiver. It is typically measured in milliseconds (ms).
 - Impact on VoIP:** High latency can cause noticeable delays in conversation, making it difficult for participants to communicate effectively. This can lead to overlapping speech, where one person starts talking before the other has finished, resulting in a disjointed and frustrating experience. For VoIP calls, latency should ideally be below 150 ms to maintain acceptable call quality [9].
- 2. Jitter:**
 - Definition:** Jitter refers to the variation in packet arrival times. In a perfect network, packets would arrive at regular intervals, but in reality, they often arrive at irregular intervals due to network congestion and other factors [10].
 - Impact on VoIP:** High jitter can cause packets to arrive out of order, leading to uneven audio quality. This can manifest as choppy or garbled speech, making it difficult for participants to understand each other. Jitter buffers are often used to mitigate this issue by temporarily storing incoming packets and releasing them at regular intervals, but excessive jitter can still degrade call quality.
- 3. Packet Loss:**
 - Definition:** Packet loss occurs when voice packets are lost during transmission due to network congestion, errors, or other issues. It is usually expressed as a percentage of total packets sent.
 - Impact on VoIP:** Packet loss can result in missing or distorted audio, as parts of the conversation are lost. Even a small percentage of packet loss can significantly degrade call quality, leading to gaps in speech and making it difficult for participants to follow the conversation. For VoIP, packet loss should ideally be less than 1% to maintain good call quality [5].

By understanding these impacts, network administrators can implement strategies to manage congestion and improve VoIP performance, such as prioritizing VoIP traffic, increasing bandwidth, and using advanced congestion control mechanisms.

Emerging Technologies: 5G and SD-WAN

5G Networks

5G, the fifth generation of mobile network technology, represents a significant leap forward from its predecessor, 4G LTE. It is designed to meet the growing demands for high-speed, reliable, and low-latency communication [11]. The key characteristics of 5G networks include:

- 1. Higher Bandwidth:**
 - Definition:** Bandwidth refers to the maximum rate at which data can be transmitted over a network. 5G networks offer significantly higher bandwidth compared to 4G, enabling faster data transfer rates.
 - Impact on VoIP:** Higher bandwidth allows for more simultaneous VoIP calls with better audio quality. It also supports high-definition video calls and other data-intensive applications without compromising performance.
- 2. Lower Latency:**
 - Definition:** Latency is the time it takes for data to travel from the source to the destination. 5G networks are designed to achieve ultra-low latency, often as low as 1 millisecond (ms).
 - Impact on VoIP:** Lower latency ensures that voice packets are delivered almost instantaneously, reducing delays and improving the overall call experience. This is particularly important for real-time communication applications like VoIP, where even

small delays can disrupt the flow of conversation.

3. Improved Reliability:

- o **Definition:** Reliability refers to the consistency and dependability of the network connection. 5G networks are built to provide more stable and reliable connections, even in densely populated areas.
- o **Impact on VoIP:** Improved reliability ensures that VoIP calls are less likely to be dropped or experience interruptions. This is crucial for maintaining high-quality communication, especially in critical business or emergency situations.

4. Enhanced Capacity:

- o **Definition:** Capacity refers to the ability of the network to handle a large number of connected devices simultaneously. 5G networks can support a massive number of devices per square kilometer.
- o **Impact on VoIP:** Enhanced capacity allows for more users to make VoIP calls simultaneously without experiencing congestion. This is particularly beneficial in environments with high device density, such as urban areas or large events.

SD-WAN Technology

Software-Defined Wide Area Network (SD-WAN) is a technology that simplifies the management and operation of a WAN by decoupling the networking hardware from its control mechanism [12]. SD-WAN uses software-based controllers to direct traffic across the network, providing several key benefits:

1. Dynamic Traffic Management:

- o **Definition:** Dynamic traffic management involves the real-time monitoring and adjustment of network traffic to optimize performance.
- o **How It Works:** SD-WAN continuously monitors network conditions and dynamically routes traffic based on predefined policies and real-time analytics. It can prioritize critical applications, such as VoIP, over less critical traffic [13].
- o **Impact on VoIP:** By prioritizing VoIP traffic, SD-WAN ensures that voice packets receive the necessary bandwidth and low-latency paths, reducing the likelihood of congestion and improving call quality.

2. Optimization:

- o **Definition:** Optimization refers to the process of enhancing network performance through various techniques, such as compression, deduplication, and error correction.
- o **How It Works:** SD-WAN employs optimization techniques to maximize the efficiency of data transmission. For example, it can compress VoIP packets to reduce bandwidth usage or use forward error correction to recover lost packets.
- o **Impact on VoIP:** Optimization techniques help maintain high-quality VoIP calls even under suboptimal network conditions. This ensures a consistent and reliable communication experience.

3. Centralized Management:

- o **Definition:** Centralized management allows network administrators to control and configure the entire WAN from a single, centralized interface.
- o **How It Works:** SD-WAN provides a centralized management platform that simplifies network configuration, monitoring, and troubleshooting. Administrators can easily implement policies, monitor performance, and respond to issues [14].
- o **Impact on VoIP:** Centralized management makes it easier to implement and enforce QoS policies for VoIP traffic, ensuring that voice calls receive the necessary resources for optimal performance.

4. Cost Efficiency:

- o **Definition:** Cost efficiency refers to the ability to achieve high performance at a lower cost.
- o **How It Works:** SD-WAN can leverage multiple types of connections (e.g., MPLS, broadband, LTE) and dynamically

select the most cost-effective path for each type of traffic [15].

- o **Impact on VoIP:** By optimizing the use of available network resources, SD-WAN can reduce operational costs while maintaining high-quality VoIP service.

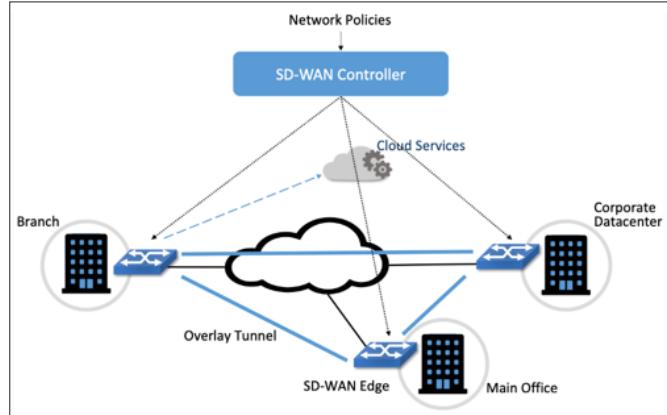


Figure 2: Simple SDWAN Architecture

Case Studies and Empirical Data

Case Study 1: Impact of 5G on VoIP Quality in a Real-World Scenario

Background

A major telecommunications provider in South Korea implemented a 5G network to enhance its VoIP services. The goal was to evaluate the impact of 5G on VoIP quality, particularly in terms of latency, jitter, and packet loss, compared to the existing 4G LTE network [16].

Implementation

The provider deployed 5G infrastructure in a densely populated urban area, covering both residential and commercial zones. VoIP services were tested using a variety of devices, including smartphones and VoIP-enabled desktop phones. The tests were conducted during peak and off-peak hours to assess performance under different network loads.

Findings

1. **Latency:** The average latency for VoIP calls over the 5G network was significantly lower than that over the 4G LTE network. The latency dropped from an average of 40 ms on 4G to just 10 ms on 5G, resulting in near-instantaneous voice transmission and a more natural conversation flow.
2. **Jitter:** Jitter was also reduced on the 5G network. The variation in packet arrival times decreased from an average of 15 ms on 4G to less than 5 ms on 5G, leading to smoother audio playback and fewer disruptions.
3. **Packet Loss:** Packet loss was virtually eliminated on the 5G network. While the 4G network experienced packet loss rates of up to 1%, the 5G network-maintained packet loss rates below 0.1%, ensuring high-quality audio without missing segments.

Conclusion

The deployment of 5G significantly improved VoIP quality by reducing latency, jitter, and packet loss. These enhancements led to clearer, more reliable voice calls, even during peak usage times. The case study demonstrates the potential of 5G to revolutionize VoIP services, providing a superior user experience [1].

Case Study 2: Use of SD-WAN to Improve VoIP Performance in an Enterprise Network

Background

A large healthcare provider with multiple locations across a metropolitan area faced challenges with its legacy MPLS network.

Frequent outages and limited bandwidth were affecting VoIP call quality, leading to poor patient experiences and operational inefficiencies.

Implementation

The healthcare provider partnered with Windstream Enterprise to implement an SD-WAN solution. The new network architecture included dual high-bandwidth connections at each location, replacing the outdated T1 lines. The SD-WAN solution also incorporated dynamic traffic management and prioritization for VoIP traffic [14].

Findings

- Reliability:** The SD-WAN solution provided 100% uptime by utilizing active/active configurations for network connections. This redundancy ensured continuous VoIP service, even if one connection failed.
- Performance:** VoIP call quality improved significantly due to the prioritization of voice traffic. The SD-WAN's dynamic traffic management capabilities ensured that VoIP packets were given precedence over less critical data, reducing latency and jitter.
- User Experience:** The enhanced network performance led to a 50% decrease in call waiting times and improved the overall patient experience. The healthcare provider's IT team could monitor and manage network performance in real-time using the SD-WAN management portal, further optimizing VoIP quality.

Mitigation Strategies Using 5G and SD-WAN

5G Implementation

1. Network Architecture:

- Small Cells and Distributed Antennas:** 5G networks utilize small cells and distributed antenna systems to provide extensive coverage and high capacity. These small cells are strategically placed to ensure strong signal strength and minimal interference, which is crucial for maintaining high-quality VoIP calls [17].
- Edge Computing:** By deploying edge computing resources closer to the end-users, 5G networks can process data locally, reducing latency and improving response times. This is particularly beneficial for VoIP applications that require real-time communication [18].

2. Quality of Service (QoS) Mechanisms:

- Network Slicing:** 5G networks can create virtual slices dedicated to specific types of traffic, such as VoIP. This ensures that VoIP traffic receives the necessary bandwidth and low-latency paths, even during peak usage times. Network slicing allows for the isolation and prioritization of VoIP traffic, enhancing call quality [19].
- Ultra-Reliable Low-Latency Communication (URLLC):** 5G supports URLLC, which is designed to provide extremely low latency and high reliability. This feature is essential for VoIP services, as it ensures that voice packets are delivered promptly and consistently, reducing delays and jitter [20].

3. Bandwidth Management:

- Dynamic Spectrum Allocation:** 5G networks can dynamically allocate spectrum based on real-time demand. This flexibility allows the network to provide additional bandwidth to VoIP services when needed, ensuring that call quality is maintained even during periods of high traffic [21].
- Carrier Aggregation:** By combining multiple frequency bands, 5G can offer higher data rates and improved capacity. This aggregation helps to distribute the load more evenly across the network, reducing congestion and enhancing VoIP performance [22].

4. Deployment Strategies:

- Urban and Rural Coverage:** 5G deployment strategies should focus on providing comprehensive coverage in both urban and

rural areas. Ensuring that VoIP services are accessible and reliable across different environments is crucial for widespread adoption.

- Collaboration with ISPs:** Telecom operators should collaborate with internet service providers (ISPs) to optimize the integration of 5G with existing broadband infrastructure. This collaboration can help to ensure seamless handoffs and consistent VoIP quality.

SD-WAN Deployment

1. Network Design:

- Hybrid WAN Architecture:** SD-WAN can integrate multiple types of connections, such as MPLS, broadband, and LTE, into a single, cohesive network. This hybrid architecture provides redundancy and ensures that VoIP traffic can be rerouted through the most optimal path, reducing the risk of congestion and outages [15].
- Centralized Control:** SD-WAN solutions offer centralized control and management, allowing network administrators to configure and monitor the entire WAN from a single interface. This centralized approach simplifies the implementation of QoS policies and ensures consistent VoIP performance across all locations [23].

2. Traffic Prioritization:

- Application-Aware Routing:** SD-WAN can identify and prioritize VoIP traffic based on application-specific requirements. By recognizing VoIP packets and assigning them higher priority, SD-WAN ensures that voice calls receive the necessary bandwidth and low-latency paths, even during periods of high network usage [15].
- Dynamic Path Selection:** SD-WAN continuously monitors network conditions and dynamically selects the best path for VoIP traffic. This real-time adjustment helps to avoid congested routes and maintain high-quality voice communication.

3. Optimization Techniques:

- Bandwidth Optimization:** SD-WAN employs various optimization techniques, such as compression and deduplication, to maximize the efficiency of data transmission. These techniques reduce the amount of bandwidth required for VoIP calls, freeing up resources for other critical applications.
- Forward Error Correction (FEC):** FEC is used to recover lost packets and improve the reliability of VoIP calls. By adding redundant data to the transmission, SD-WAN can detect and correct errors, ensuring that voice packets are delivered accurately and without distortion [24].

4. Security Enhancements:

- Encryption:** SD-WAN solutions often include built-in encryption to secure VoIP traffic. This ensures that voice calls are protected from eavesdropping and other security threats, maintaining the confidentiality and integrity of communication.
- Firewall Integration:** SD-WAN can integrate with existing firewall solutions to provide comprehensive security for VoIP traffic. This integration helps to prevent unauthorized access and protect against network attacks [25].

5. Scalability and Flexibility:

- Scalable Infrastructure:** SD-WAN is designed to be highly scalable, allowing organizations to easily expand their network as needed. This scalability ensures that VoIP services can grow with the organization, maintaining high-quality communication even as the network evolves [26].
- Flexible Deployment Options:** SD-WAN can be deployed in various configurations, including on-premises, cloud-based, or hybrid models. This flexibility allows organizations to choose the deployment option that best meets their needs and ensures optimal VoIP performance.

Future Trends and Research Directions

Integration of AI

- 1. Predictive Analytics for Network Congestion:**
 - o **Description:** AI-driven predictive analytics can analyze historical and real-time network data to forecast potential congestion points before they occur [27].
 - o **Potential Impact:** By predicting congestion, network administrators can proactively adjust network configurations to prevent degradation in VoIP quality. This can involve rerouting traffic, allocating additional bandwidth, or adjusting QoS settings.
 - o **Research Directions:** Future research could focus on developing more sophisticated AI models that can accurately predict congestion in various network environments. Studies could also explore the integration of AI with existing network management tools to create a seamless predictive maintenance system.
- 2. Adaptive QoS Mechanisms:**
 - o **Description:** AI can dynamically adjust QoS parameters based on real-time network conditions and VoIP traffic patterns [28].
 - o **Potential Impact:** Adaptive QoS mechanisms ensure that VoIP traffic always receives the necessary resources, even as network conditions change. This can lead to more consistent call quality and a better user experience.
 - o **Research Directions:** Investigate the development of AI algorithms that can learn from network performance data and optimize QoS settings in real-time. Research could also explore the use of reinforcement learning to continuously improve QoS adjustments based on feedback from the network.
- 3. AI-Enhanced Edge Computing:**
 - o **Description:** Deploy AI capabilities at the network edge to process and prioritize VoIP traffic locally.
 - o **Potential Impact:** AI-enhanced edge computing can reduce latency and improve VoIP quality by processing data closer to the user. This approach leverages the low-latency benefits of edge computing combined with AI-driven optimization.
 - o **Research Directions:** Explore the integration of AI with edge computing platforms to create intelligent edge nodes that can autonomously manage VoIP traffic. Research could also focus on the scalability and efficiency of AI-enhanced edge solutions in large-scale deployments.

Continued Evolution of 5G and SD-WAN:

- 1. Advanced 5G Features:**
 - o **Network Slicing:** Future developments in network slicing could allow for even more granular control over network resources, enabling highly customized QoS for VoIP applications [29].
 - o **Massive MIMO (Multiple Input Multiple Output):** The use of massive MIMO technology can further enhance 5G capacity and coverage, reducing congestion and improving VoIP quality [30].
 - o **Research Directions:** Investigate the potential of advanced 5G features to support emerging VoIP applications, such as high-definition video calls and immersive virtual reality (VR) communication. Studies could also explore the integration of 5G with other wireless technologies, such as Wi-Fi 6, to create seamless connectivity solutions.
- 2. SD-WAN Innovations:**
 - o **AI-Driven SD-WAN:** The integration of AI with SD-WAN can enable more intelligent and autonomous network management, optimizing traffic routing and QoS in real-time.
 - o **Multi-Cloud Connectivity:** Future SD-WAN solutions could

offer enhanced support for multi-cloud environments, ensuring consistent VoIP quality across different cloud platforms.

- o **Research Directions:** Explore the development of AI-driven SD-WAN solutions that can autonomously manage complex network environments. Research could also focus on the challenges and opportunities of integrating SD-WAN with multi-cloud architectures, ensuring seamless VoIP performance across diverse cloud services.
- 3. Security Enhancements:**
 - o **Quantum-Resistant Encryption:** As quantum computing advances, developing quantum-resistant encryption algorithms will be crucial to securing VoIP traffic.
 - o **Blockchain Integration:** The use of blockchain technology can enhance the security and transparency of network transactions, ensuring secure and verifiable routing of VoIP traffic [31].
 - o **Research Directions:** Investigate the development and implementation of quantum-resistant encryption methods for VoIP traffic. Research could also explore the potential of blockchain technology to create decentralized and tamper-proof network management systems.
- 4. IoT and VoIP Integration:**
 - o **Description:** The integration of IoT devices with VoIP systems can create new opportunities for smart communication solutions [32].
 - o **Potential Impact:** IoT-enabled VoIP systems can provide enhanced functionality, such as automated call routing based on sensor data or real-time environmental monitoring during calls.
 - o **Research Directions:** Explore the potential of IoT and VoIP integration to create innovative communication solutions. Research could focus on the technical challenges and opportunities of combining these technologies, as well as the potential applications in various industries.

Conclusion

The evolution of VoIP technology has significantly transformed the way we communicate, offering enhanced flexibility, cost savings, and new capabilities. As the world transitions to 5G and SD-WAN, the future of VoIP looks promising, with the potential for even greater advancements in quality, security, and integration with emerging technologies. The future of VoIP quality will be shaped by the continued advancements in 5G, SD-WAN, AI, and other emerging technologies.

By leveraging these innovations, network providers and researchers can work to address the ongoing challenges of VoIP quality, ensuring a seamless and reliable communication experience for users across diverse network environments. The research presented in this paper highlights the transformative potential of 5G and SD-WAN in addressing the challenges of network congestion and enhancing VoIP quality. As these technologies continue to evolve, they offer promising solutions for maintaining high-quality communication in increasingly complex and dynamic network environments [33].

The advancements in VoIP technology, particularly with the integration of 5G and SD-WAN, present exciting opportunities for enhancing the overall communication experience. The implementation of predictive analytics, adaptive QoS mechanisms, and AI-enhanced edge computing can significantly improve VoIP quality by proactively addressing network congestion and dynamic changes in network conditions. Additionally, the continued evolution of 5G features, such as network slicing and massive MIMO, coupled with innovative SD-WAN solutions, will

provide greater control and optimization of network resources to support high-quality VoIP services. Furthermore, the integration of security enhancements, such as quantum-resistant encryption and blockchain technology, will help ensure the integrity and confidentiality of VoIP communications, addressing the growing concerns surrounding cyber threats. Finally, the convergence of IoT and VoIP systems presents new avenues for developing smart communication solutions that leverage sensor data and environmental monitoring to enhance the overall user experience [34].

As the future of VoIP technology unfolds, it will be crucial for researchers, network providers, and industry stakeholders to collaborate and explore these emerging trends, addressing the challenges and capitalizing on the opportunities to deliver superior communication services to users across diverse network environments [29,35,36].

References

1. Balan HV, Eggert L, Niccolini S, Brunner M (2007) An Experimental Evaluation of Voice Quality Over the Datagram Congestion Control Protocol.
2. Gallenmüller S, Naab J, Adam I, Carle G (2020) 5G URLLC: A Case Study on Low-Latency Intrusion Prevention. Institute of Electrical and Electronics Engineers.
3. Wu D, Nie X, Deng H, Qin Z (2021) Software Defined Edge Computing for Distributed Management and Scalable Control in IoT Multinetworks. Cornell University.
4. Dantas R, Exton C, Gear AL (2018) Comparing Network Performance of Mobile VoIP Solutions.
5. Kim H, Lee J (2012) Enhancing VoIP speech quality using combined playout control and signal reconstruction. Institute of Electrical and Electronics Engineers.
6. Mondal AK, Huang C, Li J, Jain M, Kuzmanovic A (2010) A Case for WiFi Relay: Improving VoIP Quality for WiFi Users.
7. Karapantazis S, Pavlidou F (2009) VoIP: A comprehensive survey on a promising technology. Elsevier BV.
8. Craven M, Le T, Lardieri P (2008) DVoIP: Dynamic Voice-over-IP transformations for quality of service in bandwidth constrained environments. MILCOM 2008 - 2008 IEEE Military Communications Conference.
9. Ahmed AS, Shaon RH (2009) Evaluation of popular VoIP services. 2009 2nd International Conference on Adaptive Science & Technology (ICAST).
10. Madhani S, Shah S, Gutierrez A (2007) Optimized Adaptive Jitter Buffer Design for Wireless Internet Telephony. IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference.
11. 5G Technology Revolution. doi: 10.21884/ijmter.2017.4394.2tmix.
12. Braun W, Menth M (2014) Software-Defined Networking Using OpenFlow: Protocols, Applications and Architectural Design Choices. Multidisciplinary Digital Publishing Institute 6: 302-336
13. Kim D, Kim Y-H (2020) Dynamic Virtual Network Slicing and Orchestration for Selective MEC Services over Wide-Area SDN. Multidisciplinary Digital Publishing Institute 13: 245.
14. Yang Z, Cui Y, Li B, Liu y, Xu Y (2019) Software-Defined Wide Area Network (SD-WAN): Architecture, Advances and Opportunities. 2019 28th International Conference on Computer Communication and Networks (ICCCN).
15. Radcliffe D, Furey E, Blue J (2019) An SD-WAN Solution Assuring Business Quality VoIP Communication for Home Based Employees.
16. Kim DK, Lee H-W, Lee S.-C, Lee S (2020) 5G commercialization and trials in Korea. Association for Computing Machinery.
17. Gupta A, Jha RK (2015) A Survey of 5G Network: Architecture and Emerging Technologies. Institute of Electrical and Electronics Engineers.
18. Khodashenas PS, Ruiz C, Siddiqui MS, Betzler A, Riera JF (2017) The role of edge computing in future 5G mobile networks: concept and challenges. Institution of Engineering and Technology eBooks, Institution of Engineering and Technology 349.
19. Zhang N (2017) Software Defined Networking Enabled Wireless Network Virtualization: Challenges and Solutions. Cornell University.
20. Feng D (2019) Towards Ultra-Reliable Low-Latency Communications: Typical Scenarios, Possible Solutions, and Open Issues. Cornell University.
21. Marchetti N (2017) Towards the 5th Generation of Wireless Communication Systems. Cornell University.
22. Toosi AN, Mahmud R, Chi Q, Buyya R (2018) Management and Orchestration of Network Slices in 5G, Fog, Edge and Clouds. Cornell University.
23. Kreutz D, Ramos FMV, Veríssimo P, Rothenberg CE, Azodolmolky S, et al. (2014) Software-Defined Networking: A Comprehensive Survey. Cornell University.
24. Padhye C, Christensen KJ, Moreno W (2002) A new adaptive FEC loss control algorithm for voice over IP applications.
25. Gordeychik S, Kolegov DN (2018) SD-WAN Threat Landscape. Cornell University.
26. Ordoñez-Lucena J, Ameigeiras P, López D, Ramos-Munoz JJ, Lorca J, Folgueira J (2017) Network Slicing for 5G with SDN/NFV: Concepts, Architectures, and Challenges. Institute of Electrical and Electronics Engineers.
27. Fu Y, Wang S, Wang C, Hong X, McLaughlin S (2018) Artificial Intelligence to Manage Network Traffic of 5G Wireless Networks. Institute of Electrical and Electronics Engineers.
28. Gutierrez-Estevez DM (2019) Artificial Intelligence for Elastic Management and Orchestration of 5G Networks. Institute of Electrical and Electronics Engineers.
29. Li D, Wu G, Papathanassiou A, Udayan M (2016) An end-to-end network slicing framework for 5G wireless communication systems. Cornell University.
30. Habibi MA, Han B, Schotten HD (2017) Network Slicing in 5G Mobile Communication Architecture, Profit Modeling, and Challenges. Cornell University.
31. Kfoury E, Khouri D (2018) Secure End-to-End VoLTE Based on Ethereum Blockchain.
32. Atlam HF, Alenezi A, Alassafi MO, Wills G (2018) Blockchain with Internet of Things: Benefits, Challenges, and Future Directions.
33. Ruffini M (2016) Multidimensional Convergence in Future 5G Networks. Institute of Electrical and Electronics Engineers.
34. Hussain F, Hussain R, Hassan SA, Hossain E (2019) Machine Learning in IoT Security: Current Solutions and Future Challenges. Cornell University.
35. Lazzez, Slimani T (2013) Deployment of VoIP Technology: QoS Concerns. International Journal of Advanced Research in Computer and Communication Engineering 2: 3514-3521.
36. Vahdat A, Clark D, Rexford J (2015) A Purpose-built Global Network: Google's Move to SDN. ACM Queue 13: 1-13.

Copyright: ©2022 Abhishek Singh. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.