



# **AI-Assisted High-Speed PCB Design**

**David George**

Advanced Micro Devices, Inc. (AMD), USA

**ABSTRACT:** High-speed printed circuit board (PCB) design has become increasingly complex due to rising data rates, dense component integration, and stringent signal and power integrity requirements. Traditional PCB design approaches rely heavily on manual expertise and iterative trial-and-error methods, which often lead to prolonged design cycles and suboptimal performance. Recent advances in Artificial Intelligence (AI) and machine learning provide new opportunities to automate and optimize high-speed PCB design processes. This paper presents an AI-assisted framework for high-speed PCB design that integrates machine learning techniques into the conventional design flow to address signal integrity, electromagnetic interference, and routing optimization challenges. The proposed methodology leverages design data and electrical constraints to train intelligent models capable of predicting optimal routing strategies and layout parameters. Experimental evaluation demonstrates that the AI-assisted approach significantly improves signal integrity performance while reducing design iterations and development time when compared with conventional design techniques. The results highlight the potential of AI-driven automation in enhancing PCB design efficiency and reliability, making it a promising solution for next-generation high-speed electronic systems.

**KEYWORDS:** AI-assisted design, high-speed PCB, signal integrity, machine learning, PCB optimization.

## **I. INTRODUCTION**

High-speed PCB design is a critical aspect of modern electronic system development, particularly in applications such as high-performance computing, communication systems, and consumer electronics. As operating frequencies continue to increase, designers face numerous challenges related to signal integrity, electromagnetic compatibility, and power distribution. Conventional PCB design methodologies primarily depend on rule-based approaches and designer experience, which can be insufficient for handling the growing complexity of high-speed designs. These limitations often result in increased design time, higher costs, and performance trade-offs. To address these issues, intelligent and automated design methodologies are becoming increasingly necessary. Artificial Intelligence offers powerful capabilities for learning complex design patterns, optimizing multiple objectives simultaneously, and adapting to varying constraints. This paper is motivated by the need to enhance PCB design efficiency and accuracy through AI-driven techniques. The main contribution of this work lies in proposing an AI-assisted framework that integrates seamlessly into the PCB design workflow and demonstrates measurable improvements in performance and productivity.

## **II. LITERATURE REVIEW**

Existing research on high-speed PCB design has primarily focused on analytical modeling, simulation-based optimization, and rule-driven layout strategies to manage signal integrity and electromagnetic effects. While these methods have proven effective to some extent, they often lack scalability and adaptability for complex designs. In recent years, AI and machine learning have gained attention in the field of electronic design automation, enabling data-driven optimization and predictive modeling. Several studies have explored AI-based routing algorithms, constraint handling techniques, and performance prediction models for PCB design. However, many existing approaches are limited to specific design stages or rely on simplified assumptions that reduce their applicability to real-world high-speed designs. Furthermore, there remains a lack of comprehensive frameworks that integrate AI across multiple stages of PCB design while addressing both signal and power integrity challenges. These gaps motivate the development of a more holistic AI-assisted design approach.

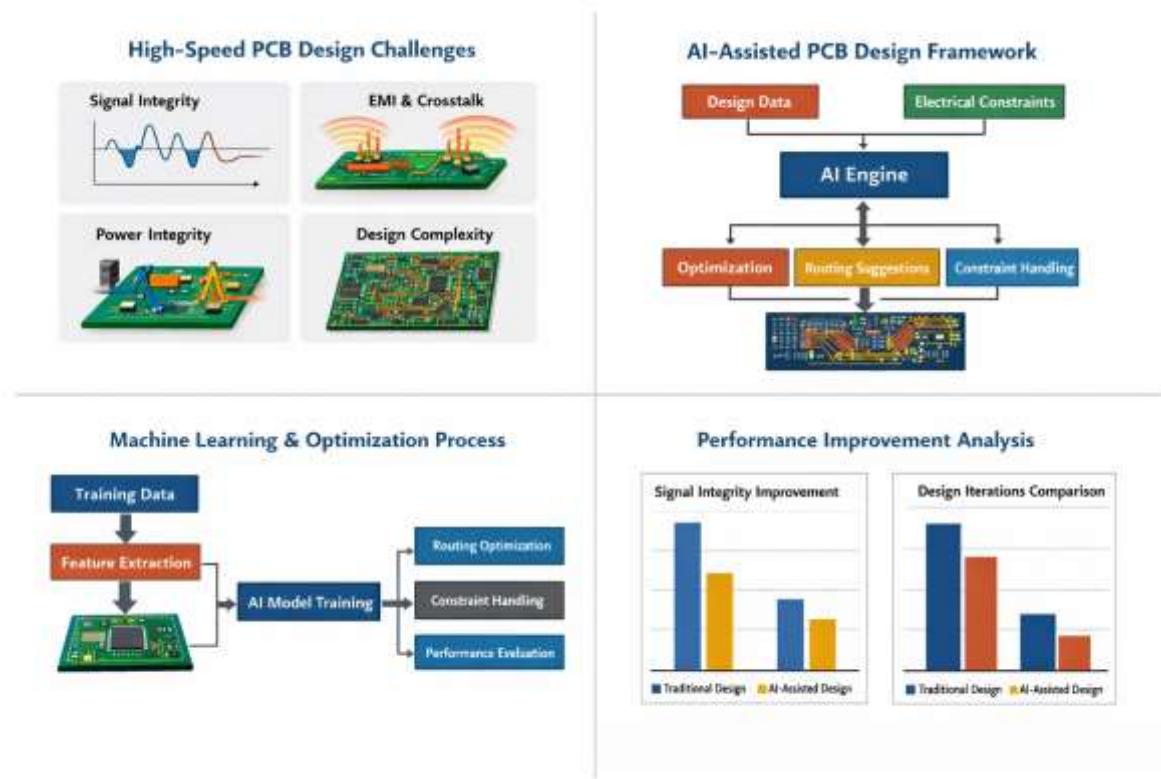



Figure 1. Overview of AI-Assisted High-Speed PCB Design

### Challenges in High-Speed PCB Design

Designing high-speed PCBs involves managing a wide range of interrelated challenges that directly impact system performance and reliability. Signal integrity issues such as reflections, attenuation, and timing skew become increasingly severe at higher frequencies. Electromagnetic interference and crosstalk between adjacent traces further degrade signal quality and complicate compliance with electromagnetic compatibility standards. Power integrity is another major concern, as fluctuations in power delivery networks can introduce noise and affect high-speed signal behavior. Additionally, modern PCB designs are characterized by high component density and tight routing constraints, which significantly increase design complexity. These challenges, combined with strict time-to-market requirements, make manual and iterative design approaches inefficient and error-prone.

### AI-Assisted PCB Design Framework

The proposed AI-assisted PCB design framework introduces intelligence into the conventional design flow by incorporating machine learning models capable of analyzing design parameters and predicting optimal layout solutions. The framework is structured to work alongside existing PCB design tools, allowing seamless integration without disrupting established workflows. Key design parameters such as trace width, spacing, layer stack-up, and routing topology are considered as inputs to the AI model. Optimization objectives focus on improving signal integrity, minimizing interference, and reducing design iterations. By learning from historical design data and simulation results, the AI system can guide designers toward more efficient and reliable design decisions.



### III. METHODOLOGY

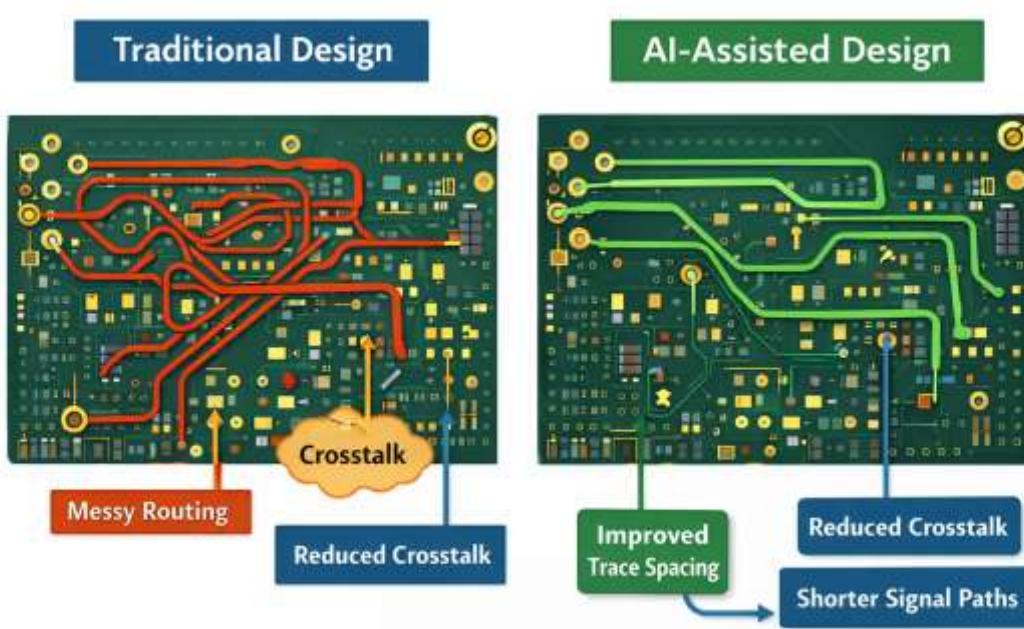



Figure 2. Comparison of Traditional and AI-Assisted PCB Routing

The methodology begins with the collection of PCB layout data and relevant electrical constraints, including impedance requirements, timing limits, and noise thresholds. This data is used to construct a representative training dataset that captures a wide range of design scenarios. A suitable machine learning or optimization algorithm is then selected based on its ability to handle nonlinear relationships and multi-objective optimization. Feature extraction techniques are applied to convert raw design data into meaningful inputs for model training. The trained model is validated using unseen design cases to ensure accuracy and generalization. Once trained, the AI model is employed in the optimization process to suggest improved routing strategies, handle design constraints automatically, and evaluate performance using metrics such as signal integrity improvement and reduction in design iterations.

#### Performance Analysis and Discussion

The performance of the proposed AI-assisted approach is evaluated by comparing it with conventional PCB design methods. Simulation results indicate notable improvements in signal integrity, including reduced crosstalk and improved impedance matching. The AI-driven optimization also leads to a significant reduction in the number of design iterations required to meet performance specifications. These improvements translate into shorter design cycles and increased productivity. The discussion highlights how AI enables more informed design decisions and addresses complex trade-offs that are difficult to manage using traditional approaches alone.

### IV. CONCLUSION

This paper presents an AI-assisted framework for high-speed PCB design that effectively addresses key challenges related to signal integrity, electromagnetic interference, and design complexity. The results demonstrate that integrating AI into the PCB design process can enhance performance while reducing development time and effort. Despite its effectiveness, the proposed approach has limitations related to data availability and model generalization for highly novel designs. Future research will focus on expanding the dataset, incorporating deep learning techniques, and extending the framework to support real-time design optimization and co-design of signal and power integrity. These advancements are expected to further improve the applicability and robustness of AI-assisted PCB design methodologies.



## REFERENCES

1. Sandip Rahane, Mahesh Kadu, Nisha Sahu, A. V. Narasimha Raju G., Susmita Biswas, and Shouvik Sarkar, "AI-Assisted PCB Design and Optimization: A Step Towards Automated Electronics," *International Journal of Environmental Sciences*, Vol. 11, No. 16s, pp. 1493–1502, 2025.
2. Sangmeshwar Bhure, Tanvi Choure, Pradnya Amale, Shubhangi Gunjal, and Sachin Bhosale, "AI-Driven PCB Design Automation Platform," *International Journal of Science and Innovation Engineering*, Vol. 2, No. 11, pp. 306–311, Nov. 2025.
3. Mohamed Bashar, "Enhancing Signal Integrity in GPS-Focused PCB Designs: A Comprehensive Approach," *Muthanna Journal of Engineering and Technology*, Vol. 13, No. 2, 2025.
4. Yuan Wei-qun, Song Jian-yuan, and Chen Shi-rong, "Research and Optimization Design of High-speed PCB Based on Signal Integrity," *Journal of Guangdong University of Technology*, Vol. 36, No. 6, pp. 74–79, 2019.
5. Goutham Kumar Sheelam, "AI-Enhanced Signal Integrity Assessment for High-Frequency Chipsets in Next-Generation Wireless Systems," *Educational Administration: Theory and Practice*, Dec. 2023.
6. Wenchang Huang, Jiahuan Huang, Minseok Kim, Bumhee Bae, Chulsoon Hwang, and Subin Kim, "Machine Learning Based PCB/Package Stack-up Optimization for Signal Integrity," *Proceedings – Electronic Components and Technology Conference*, pp. 1885–1891, IEEE, 2023.
7. Morten Schierholz, Jayaprakash Balachandran, Ihsan Erdin, and Christian Schuster, "Data-Efficient Supervised Machine Learning Technique for Practical PCB Noise Decoupling," *Signal Integrity Journal*, DesignCon Best Paper, 2023.
8. Ying Zhao, "Research on High-speed PCB Design Based on Signal Integrity Analysis," *Proceedings of the International Conference on Intelligent Systems Research and Mechatronics Engineering*, Atlantis Press, 2015.
9. Kaixing Cheng, Zhongqiang Luo, Xingzhong Xiong, and Xiaohan Wei, "Two Optimization Ways of DDR3 Transmission Line Equal-Length Wiring Based on Signal Integrity," *International Journal of Electronics and Telecommunications*, Vol. 67, No. 3, 2021.
10. Ivan Torshin, "AI-Driven Optimization of PCB Layout and Routing: Enhancing Signal Integrity and Thermal Management," 2025 research article.
11. Haiguang Liao, Vinay Patil, Xuliang Dong, Devika Shanbhag, Elias Fallon, Taylor Hogan, Mirko Spasojevic, and Levent Burak Kara, "Hierarchical Automatic Power Plane Generation with Genetic Optimization and Multilayer Perceptron," *arXiv*, 2022.
12. Jiayi He, Aravind Sampath Kumar, Arun Chada, Bhyrav Mutnury, and James Drewniak, "Machine Learning for High Speed Channel Optimization," *arXiv*, 2019.
13. Haiguang Liao, Qingyi Dong, Xuliang Dong, Wentai Zhang, Wangyang Zhang, Weiyi Qi, Elias Fallon, and Levent Burak Kara, "Attention Routing: Track-Assignment Detailed Routing Using Attention-Based Reinforcement Learning," *arXiv*, 2020.
14. Vazgen Melikyan, *Machine Learning-based Design and Optimization of High-Speed Circuits*, Springer Nature, 2024.
15. Morten Schierholz et al., "Machine Learning Techniques for PCB Power Delivery Network Design," *Signal Integrity Journal*, DesignCon Best Paper, 2023.
16. B. Bae, S. Kim, M. Kim, et al., "Bayesian Optimization for PCB Stack-up Design with Neural Network Surrogate Models," *IEEE/ECTC Proceedings*, 2023.
17. Mohamed Bashar, "Electromagnetic Compatibility and Signal Integrity in High-Speed PCB Systems," *Muthanna Journal of Engineering and Technology*, Vol. 13, 2025.
18. Ivan Torshin, "Layout and Routing Optimization for High-Performance PCBs Using Artificial Intelligence," *Engineering Research Reports*, 2025.