AI-Driven Cloud Framework for Real-Time Database Management with Cybersecurity and KNN Optimization

Authors

  • Emil Frederik Johansson Cloud Security Specialist, ScandiSecure Data Labs, Aarhus, Denmark Author

DOI:

https://doi.org/10.15680/IJCTECE.2025.0805007

Keywords:

AI-driven cloud architectures, Multi-modal deep learning, Life insurance platforms, Smart insurance, Fraud detection, Underwriting automation, Data fusion, Cloud-native AI

Abstract

The increasing complexity of modern data systems demands frameworks that combine real-time processing, advanced analytics, and robust cybersecurity. This study proposes an AI-driven cloud framework for real-time database management, integrating K-Nearest Neighbor (KNN) optimization to enhance data retrieval, processing efficiency, and predictive accuracy. By leveraging cloud-native architectures, the framework ensures scalability, low-latency performance, and seamless integration with distributed database environments. The inclusion of advanced cybersecurity mechanisms protects sensitive information against evolving threats, ensuring data integrity and system resilience. Experimental evaluations demonstrate that the proposed framework significantly improves real-time query performance, optimizes resource utilization, and strengthens security posture, highlighting its potential for critical applications in finance, healthcare, and enterprise IT infrastructures. This approach exemplifies the synergy of AI, cloud computing, and machine learning techniques to deliver intelligent, secure, and high-performance database management solutions.

References

1. Asgarian, A., Saha, R., Jakubovitz, D., & Peyre, J. (2023). AutoFraudNet: A multimodal network to detect fraud in the auto insurance industry. arXiv. https://doi.org/10.48550/arXiv.2301.07526

2. Manda, P. (2023). A Comprehensive Guide to Migrating Oracle Databases to the Cloud: Ensuring Minimal Downtime, Maximizing Performance, and Overcoming Common Challenges. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 6(3), 8201-8209.

3. Deng, X., & Dragotti, P. L. (2019). Deep convolutional neural network for multi-modal image restoration and fusion. arXiv. https://doi.org/10.48550/arXiv.1910.04066

4. Adari, V. K. (2024). The Path to Seamless Healthcare Data Exchange: Analysis of Two Leading Interoperability Initiatives. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 7(6), 11472-11480.

5. Prabaharan, G., Sankar, S. U., Anusuya, V., Deepthi, K. J., Lotus, R., & Sugumar, R. (2025). Optimized disease prediction in healthcare systems using HDBN and CAEN framework. MethodsX, 103338.

6. Peng, Y., Qi, J., Huang, X., & Yuan, Y. (2017). CCL: Cross-modal correlation learning with multi-grained fusion by hierarchical network. arXiv. https://doi.org/10.48550/arXiv.1704.02116

7. Reddy, B. V. S., & Sugumar, R. (2025, April). Improving dice-coefficient during COVID 19 lesion extraction in lung CT slice with watershed segmentation compared to active contour. In AIP Conference Proceedings (Vol. 3270, No. 1, p. 020094). AIP Publishing LLC.

8. Richie, R. C. (2024). Through the looking glass darkly: How may AI models influence future underwriting? Journal of Insurance Medicine, 51(2), 59–63. https://doi.org/10.17849/insm-51-2-59-63.1

9. Konda, S. K. (2022). ENGINEERING RESILIENT INFRASTRUCTURE FOR BUILDING MANAGEMENT SYSTEMS: NETWORK RE-ARCHITECTURE AND DATABASE UPGRADE AT NESTLÉ PHX. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 5(1), 6186-6201.

10. Tuli, S., Basumatary, N., Gill, S. S., Kahani, M., Arya, R. C., Wander, G. S., & Buyya, R. (2019). HealthFog: An ensemble deep learning based smart healthcare

11. Hendriksen, M., Bleeker, M., Vakulenko, S., van Noord, N., & Kuiper, E. (2021). Extending CLIP for category-to-image retrieval in e-commerce. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, 10654–10663. https://doi.org/10.1109/ICCV48922.2021.01045

12. Dave, B. L. (2024). An Integrated Cloud-Based Financial Wellness Platform for Workplace Benefits and Retirement Management. International Journal of Technology, Management and Humanities, 10(01), 42-52.

13. Azmi, S. K. (2021). Spin-Orbit Coupling in Hardware-Based Data Obfuscation for Tamper-Proof Cyber Data Vaults. Well Testing Journal, 30(1), 140-154.

14. Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., & Xu, W. (2016). CNN-RNN: A unified framework for multi-label image classification. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2285–2294. https://doi.org/10.1109/CVPR.2016.248

15. Zerine, I., Rahman, T., Ahmad, M. Y., Biswas, Y., & Islam, M. M. (2025). Enhancing public health supply chain forecasting using machine learning for crisis preparedness and system resilience. International Journal of Communication Networks and Information Security, 17(4), 82–98.

16. Kim, J., Koh, J., Kim, Y., Choi, J., Hwang, Y., & Choi, J. W. (2018). Robust deep multi-modal learning based on gated information fusion network. arXiv preprint arXiv:1807.06233. https://arxiv.org/abs/1807.06233

17. Reddy, C. S. K. (2025). Scalable AI Framework Using SAP, Oracle Cloud, SDN, and BMS Upgrades for Intelligent and Sustainable Healthcare. International Journal of Humanities and Information Technology, 7(03).

18. Tyagi, N. (2025). AI in Education: Personalized Learning through Intelligent Tutors. International Journal of Advanced Research in Computer Science & Technology (IJARCST), 8(2), 11841-11848.

19. Sankar, Thambireddy,. (2024). SEAMLESS INTEGRATION USING SAP TO UNIFY MULTI-CLOUD AND HYBRID APPLICATION. International Journal of Engineering Technology Research & Management (IJETRM), 08(03), 236–246. https://doi.org/10.5281/zenodo.15760884

20. Arjunan, T., Arjunan, G., & Kumar, N. J. (2025, July). Optimizing the Quantum Circuit of Quantum K-Nearest Neighbors (QKNN) Using Hybrid Gradient Descent and Golden Eagle Optimization Algorithm. In 2025 International Conference on Computing Technologies & Data Communication (ICCTDC) (pp. 1-7). IEEE.

21. Guo, W., Wang, J., & Wang, S. (2019). Deep multimodal representation learning: A survey. IEEE Access, 7, 142-157. https://doi.org/10.1109/ACCESS.2018.2881879

22. Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., & Ben Ayed, I. (2018). HyperDense-Net: A hyper-densely connected CNN for multi-modal image segmentation. arXiv preprint arXiv:1804.02967. https://arxiv.org/abs/1804.02967

23. Karvannan, R. (2023). Real‑Time Prescription Management System Intake & Billing System. International Journal of Humanities and Information Technology, 5(02), 34-43.

24. Patel, M., & Rajasekaran, D. (2023). AI-driven fraud detection in life insurance: A survey. Journal of Insurance Technology, 15(1), 22-38. https://doi.org/10.5281/zenodo.4567890

Downloads

Published

2025-10-11

How to Cite

AI-Driven Cloud Framework for Real-Time Database Management with Cybersecurity and KNN Optimization. (2025). International Journal of Computer Technology and Electronics Communication, 8(5), 11353-11356. https://doi.org/10.15680/IJCTECE.2025.0805007