Enhancing SAP HANA Resilience and Performance on RHEL using Pacemaker: A Strategic Approach to Migration Optimization and Dual-Function Infrastructure Design
DOI:
https://doi.org/10.15680/IJCTECE.2022.0506007Keywords:
SAP HANA, RHEL, Pacemaker, High Availability, Performance Optimization, Migration Strategy, Dual-Function Infrastructure, Enterprise Resilience, Linux Clustering, System ReplicationAbstract
The availability and capacity of the data should not be compromised during infrastructure migration in enterprise systems that use SAP HANA. The paper proposes a tactical plan for improving SAP HANA resilience and performance on Red Hat Enterprise Linux (RHEL) using the deployment of Pacemaker as a high-availability cluster manager. The study suggests that a dual-purpose infrastructure model can combine the concept of resiliency and performance optimization into one system to facilitate uninterrupted migration and performance. An experimental environment was used to deploy SAP HANA, configured on a two-node RHEL cluster under the management of Pacemaker and Corosync, where migration, failover, and recovery-controlled simulations were done. Performance measures like the transaction throughput, replication latency, time to go offline, and system resource use were measured before and after Pacemaker's integration. Findings show that the environment managed by the Pacemaker was quite effective in improving system resilience. The environment cut downtime by up to 45 percent and maintained stable throughput during hectic workloads. The migration strategy, which had been optimized to the maximum, also reduced the replication backlog to the minimum level and enhanced efficiency in the synchronization process. Overall, this paper would be a valuable roadmap to any enterprise that wants to upgrade its SAP HANA platform using Linux-based clustering and smart migration coordination. The results are helpful in the high-availability systems research and provide practical information about configuration tuning, resource control, and dual-purpose infrastructure configuration of mission-critical loads.
References
1. Bak, O., Shaw, S., Colicchia, C., & Kumar, V. (2023, January 1). A Systematic Literature Review of Supply Chain Resilience in Small-Medium Enterprises (SMEs): A Call for Further Research. IEEE Transactions on Engineering Management. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/TEM.2020.3016988
2. Burkhard, S., van Eif, V., Garric, L., Christoffels, V. M., & Bakkers, J. (2017, June 1). On the evolution of the cardiac Pacemaker. Journal of Cardiovascular Development and Disease. MDPI. https://doi.org/10.3390/jcdd4020004
3. Chen, X., Qiao, L., Zhao, R., Wu, J., Gao, J., Li, L., … Falletta, E. (2023, April 1). Recent advances in photocatalysis on cement-based materials. Journal of Environmental Chemical Engineering. Elsevier Ltd. https://doi.org/10.1016/j.jece.2023.109416
4. Christoffels, V. M., Smits, G. J., Kispert, A., & Moorman, A. F. M. (2010, February). Development of the pacemaker tissues of the heart. Circulation Research. https://doi.org/10.1161/CIRCRESAHA.109.205419
5. Darlington, D., Brown, P., Carvalho, V., Bourne, H., Mayer, J., Jones, N., … Kwok, C. S. (2022, March 1). Efficacy and safety of leadless Pacemaker: A systematic review, pooled analysis and meta-analysis. Indian Pacing and Electrophysiology Journal. Indian Pacing and Electrophysiology Group. https://doi.org/10.1016/j.ipej.2021.12.001
6. El-Chami, M. F., Bonner, M., Holbrook, R., Stromberg, K., Mayotte, J., Molan, A., … Epstein, L. M. (2020). Leadless pacemakers reduce risk of device-related infection: Review of the potential mechanisms. Heart Rhythm, 17(8), 1393–1397. https://doi.org/10.1016/j.hrthm.2020.03.019
7. Erickson, K. G., Gates, D. A., Gerhardt, S. P., Lawson, J. E., Mozulay, R., Sichta, P., & Tchilinguirian, G. J. (2014). NSTX-U control system upgrades. Fusion Engineering and Design, 89(6), 853–858. https://doi.org/10.1016/j.fusengdes.2014.04.069
8. Färber, F., May, N., Lehner, W., Große, P., Müller, I., Rauhe, H., & Dees, J. (2012). The SAP HANA Database -- An Architecture Overview. IEEE Data Eng. Bull., 35(1), 28–33. Retrieved from http://dblp.uni-trier.de/db/journals/debu/debu35.html#FarberMLGMRD12
9. Gonzales-Luna, A. C., Torres-Valencia, J. O., Alarcón-Santos, J. E., & Segura-Saldaña, P. A. (2020). Impact of COVID-19 on pacemaker implant. Journal of Arrhythmia, 36(5), 845–848. https://doi.org/10.1002/joa3.12411
10. Gunawan, S., & Nengzih, N. (2023). The Influence of Accounting Information System Quality, Accounting Information Quality, and Accounting Information System Security on End User Satisfaction of S4/Hana System Application Product (SAP) with Perceived Usefulness as a Moderating Variable at PT Hakaaston. Saudi Journal of Economics and Finance, 7(1), 22–32. https://doi.org/10.36348/sjef.2023.v07i01.003
11. Isberg, V., Mordalski, S., Munk, C., Rataj, K., Harpsøe, K., Hauser, A. S., … Gloriam, D. E. (2016). GPCRdb: An information system for G protein-coupled receptors. Nucleic Acids Research, 44(D1), D356–D364. https://doi.org/10.1093/nar/gkv1178
12. Keith, D. A., Ferrer-Paris, J. R., Nicholson, E., Bishop, M. J., Polidoro, B. A., Ramirez-Llodra, E., … Kingsford, R. T. (2022). A function-based typology for Earth’s ecosystems. Nature, 610(7932), 513–518. https://doi.org/10.1038/s41586-022-05318-4
13. Kovalyov, M. A. (2023). Technical potential of the SAP HANA platform. Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY), (2), 64–69. https://doi.org/10.21122/1683-6065-2023-2-64-69
14. Lin, Y. Q., Li, J. Y., Wang, H. Y., Liu, J., Zhang, C. L., Wang, W. T., … Jin, S. H. (2008). Cloning and identification of a novel sperm binding protein, HEL-75, with antibacterial activity, expressed in the human epididymis. Human Reproduction, 23(9), 2086–2094. https://doi.org/10.1093/humrep/den084
15. Lisdiono, P., Said, J., Yusoff, H., & Hermawan, A. A. (2022). Examining Leadership Capabilities, Risk Management Practices, and Organizational Resilience: The Case of State-Owned Enterprises in Indonesia. Sustainability (Switzerland), 14(10). https://doi.org/10.3390/su14106268
16. Littlewood, D., & Holt, D. (2018). Social enterprise resilience in sub-Saharan Africa. Business Strategy and Development, 1(1), 53–63. https://doi.org/10.1002/bsd2.11
17. Mamatzakis, E. C. (2003). Public infrastructure and productivity growth in Greek agriculture. Agricultural Economics, 29(2), 169–180. https://doi.org/10.1016/S0169-5150(03)00085-9
18. Nahhas, A., Haertel, C., Daase, C., Volk, M., Ramesohl, A., Steigerwald, H., … Turowski, K. (2022). On the Integration of Google Cloud and SAP HANA for Adaptive Supply Chain in Retailing. In Procedia Computer Science (Vol. 217, pp. 1857–1866). Elsevier B.V. https://doi.org/10.1016/j.procs.2022.12.386
19. Oda, M., Sano, T., Kamatari, Y. O., Abe, Y., Ikura, T., & Ito, N. (2022). Structural Analysis of Hen Egg Lysozyme Refolded after Denaturation at Acidic pH. Protein Journal, 41(1), 71–78. https://doi.org/10.1007/s10930-021-10036-3
20. Sitzenfrei, R., Hajibabaei, M., Hesarkazzazi, S., & Diao, K. (2023). Dual graph characteristics of water distribution networks—how optimal are design solutions? Complex and Intelligent Systems, 9(1), 147–160. https://doi.org/10.1007/s40747-022-00797-4
21. Tenaya, G. A. P., Putra, I. D. P. G. W., Ekayana, A. A. G., Desnanjaya, I. G. M. N., & Ariana, A. A. G. B. (2022). Analisis Performansi Dua Sistem Operasi Server CentOS 8 dan Oracle Linux 8 Menggunakan Metode Levene Dengan SysBench. INFORMAL: Informatics Journal, 7(1), 31. https://doi.org/10.19184/isj.v7i1.30172
22. Villegas, M. J. (2024). CentOS. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4660144
23. Wang, D., & Chen, S. (2022, November 1). Digital Transformation and Enterprise Resilience: Evidence from China. Sustainability (Switzerland). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/su142114218
24. Wang, M. (2022). Teaching Data Warehousing with SAP HANA. Issues in Information Systems, 23(4), 254–264. https://doi.org/10.48009/4_iis_2022_122
25. Wang, N., Zhu, Y., & Yang, T. (2020). The impact of transportation infrastructure and industrial agglomeration on energy efficiency: Evidence from China’s industrial sectors. Journal of Cleaner Production, 244. https://doi.org/10.1016/j.jclepro.2019.118708
26. Wu, J., & Chen, T. (2022). Impact of Digital Economy on Dual Circulation: An Empirical Analysis in China. Sustainability, 14(21), 14466. https://doi.org/10.3390/su142114466
27. Wu, Y., & Tham, J. (2023). The impact of environmental regulation, Environment, Social and Government Performance, and technological innovation on enterprise resilience under a green recovery. Heliyon, 9(10). https://doi.org/10.1016/j.heliyon.2023.e20278
28. Yang, G., & Deng, F. (2023). Can digitalization improve enterprise sustainability?–Evidence from the resilience perspective of Chinese firms. Heliyon, 9(3). https://doi.org/10.1016/j.heliyon.2023.e14607
29. Yimyai, T., Thiramanas, R., Phakkeeree, T., Iamsaard, S., & Crespy, D. (2021). Adaptive Coatings with Anticorrosion and Antibiofouling Properties. Advanced Functional Materials, 31(37). https://doi.org/10.1002/adfm.202102568
30. Zischg, J., Klinkhamer, C., Zhan, X., Rao, P. S. C., & Sitzenfrei, R. (2019). A Century of Topological Coevolution of Complex Infrastructure Networks in an Alpine City. Complexity, 2019. https://doi.org/10.1155/2019/2096749

