Serverless Quantum-AI and Machine Learning Framework for Intelligent Real-Time Healthcare Analytics
DOI:
https://doi.org/10.15680/IJCTECE.2022.0506013Keywords:
Serverless Computing, Quantum Artificial Intelligence, Machine Learning, Real-Time Healthcare Analytics, Predictive Modeling, Intelligent Automation, Cloud ArchitectureAbstract
This paper presents a novel Serverless Quantum-AI and Machine Learning Framework designed to enhance real-time healthcare analytics and decision-making. The proposed architecture integrates quantum computing principles with artificial intelligence and machine learning models to enable high-speed data processing, intelligent automation, and predictive analysis within healthcare ecosystems. By leveraging a serverless cloud environment, the framework ensures scalability, reliability, and cost efficiency while eliminating traditional infrastructure overheads. The integration of quantum algorithms accelerates diagnostic insights and anomaly detection, while machine learning models continuously adapt to dynamic healthcare data streams. This approach empowers healthcare providers with actionable intelligence for clinical workflows, patient monitoring, and resource optimization, contributing to a resilient and data-driven healthcare infrastructure.
References
1. Gholami, R., Sidorova, A., & Kraemer, K. L. (2021). The benefits and drawbacks of cloud ERP systems for healthcare. TechTarget.
2. Sasidevi Jayaraman, Sugumar Rajendran and Shanmuga Priya P., “Fuzzy c-means clustering and elliptic curve cryptography using privacy preserving in cloud,” Int. J. Business Intelligence and Data Mining, Vol. 15, No. 3, 2019.
3. Anand, L., & Neelanarayanan, V. (2019). Liver disease classification using deep learning algorithm. BEIESP, 8(12), 5105–5111.
4. Amuda, K. K., Kumbum, P. K., Adari, V. K., Chunduru, V. K., & Gonepally, S. (2020). Applying design methodology to software development using WPM method. Journal ofComputer Science Applications and Information Technology, 5(1), 1-8.
5. Sudhan, S. K. H. H., & Kumar, S. S. (2015). An innovative proposal for secure cloud authentication using encrypted biometric authentication scheme. Indian journal of science and technology, 8(35), 1-5.
6. Peddamukkula, P. K. Ethical Considerations in AI and Automation Integration Within the Life Insurance Industry. https://www.researchgate.net/profile/Praveen-Peddamukkula/publication/397017494_Ethical_Considerations_in_AI_and_Automation_Integration_Within_the_Life_Insurance_Industry/links/690239c04baee165918ee584/Ethical-Considerations-in-AI-and-Automation-Integration-Within-the-Life-Insurance-Industry.pdf
7. Mathur, T., Kotapati, V. B. R., & Das, D. (2020). Agentic Negotiation Framework for Strategic Vendor Management. Journal of Artificial Intelligence & Machine Learning Studies, 4, 143-177.
8. KM, Z., Akhtaruzzaman, K., & Tanvir Rahman, A. (2022). BUILDING TRUST IN AUTONOMOUS CYBER DECISION INFRASTRUCTURE THROUGH EXPLAINABLE AI. International Journal of Economy and Innovation, 29, 405-428.
9. Jeetha Lakshmi, P. S., Saravan Kumar, S., & Suresh, A. (2014). Intelligent Medical Diagnosis System Using Weighted Genetic and New Weighted Fuzzy C-Means Clustering Algorithm. In Artificial Intelligence and Evolutionary Algorithms in Engineering Systems: Proceedings of ICAEES 2014, Volume 1 (pp. 213-220). New Delhi: Springer India.
10. Anbalagan, B., & Pasumarthi, A. (2022). Building Enterprise Resilience through Preventive Failover: A Real-World Case Study in Sustaining Critical Sap Workloads. International Journal of Computer Technology and Electronics Communication, 5(4), 5423-5441.
11. Anand, L., & Neelanarayanan, V. (2019). Feature Selection for Liver Disease using Particle Swarm Optimization Algorithm. International Journal of Recent Technology and Engineering (IJRTE), 8(3), 6434-6439.
12. Tuli, S., Basumatary, N., Gill, S. S., Kahani, M., Arya, R. C., Wander, G. S., & Buyya, R. (2019). HealthFog: An Ensemble Deep Learning based Smart Healthcare System for Automatic Diagnosis of Heart Diseases in Integrated IoT and Fog Computing Environments. arXiv.
13. Cherukuri, B. R. (2019). Serverless revolution: Redefining application scalability and cost efficiency. https://d1wqtxts1xzle7.cloudfront.net/121196636/WJARR_2019_0093-libre.pdf?1738736725=&response-content-disposition=inline%3B+filename%3DServerless_revolution_Redefining_applica.pdf&Expires=1762272213&Signature=XCCyVfo54ImYDZxM5lPQQ2nkTOzAKecpW86qlfne0lLpMlvC6WaoSiOBsyS3SyoPj8nAPWdSqFOeiZqIwKsTriCNb6de-mfqXndHQwXRcrA7aVAoQ2txD12Ph36pxjJRJehcVlRK0o878Lh-1nc2mmtJEssNhLC8sVziFBjWuaUiW2Gr0YEZ8ZgIOfHv7gPNREi4JzDmIxpr8eTxb08LoN8KlFSLgouF4SpPoejQYmYOW7JRNijqsMnyhfjSsDv8fdrjSbkb2w-GD7tWhZHVT-1Vu03XPRsjVN-fbMtINmy9tAbgjElqevLlU36g54NdZ8VG4H2pouSeuv55VROnlA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
14. Anugula Sethupathy, Utham Kumar. (2019). Real-Time Inventory Visibility Using Event Streaming and Analytics in Retail Systems. International Journal of Novel Research and Development. 4. 23-33. 10.56975/ijnrd.v4i4.309064.
15. Soumik, M. S., Sarkar, M., & Rahman, M. M. (2021). Fraud Detection and Personalized Recommendations on Synthetic E-Commerce Data with ML. Research Journal in Business and Economics, 1(1a), 15-29.
16. Sridhar Kakulavaram. (2022). Life Insurance Customer Prediction and Sustainbility Analysis Using Machine Learning Techniques. International Journal of Intelligent Systems and Applications in Engineering, 10(3s), 390 –.Retrieved from https://ijisae.org/index.php/IJISAE/article/view/7649
17. Hassan, H. B., Barakat, S. A., & Sarhan, Q. I. (2021). Survey on serverless computing. Journal of Cloud Computing, 10, 39. https://doi.org/10.1186/s13677 021 00253 7 SpringerOpen
18. Eapen, B. R., Sartipi, K., & Archer, N. (2020). Serverless on FHIR: Deploying machine learning models for healthcare on the cloud [Preprint]. arXiv. https://arxiv.org/abs/2006.04748 arXiv
19. Begum, R.S, Sugumar, R., Conditional entropy with swarm optimization approach for privacy preservation of datasets in cloud [J]. Indian Journal of Science and Technology 9(28), 2016. https://doi.org/10.17485/ijst/2016/v9i28/93817’
20. Cherukuri, B. R. (2020). Quantum machine learning: Transforming cloud-based AI solutions. https://www.researchgate.net/profile/Bangar-Raju-Cherukuri/publication/388617417_Quantum_machine_learning_Transforming_cloud-based_AI_solutions/links/67a33efb645ef274a46db8cf/Quantum-machine-learning-Transforming-cloud-based-AI-solutions.pdf
21. Kumbum, P. K., Adari, V. K., Chunduru, V. K., Gonepally, S., & Amuda, K. K. (2020). Artificial intelligence using TOPSIS method. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 3(6), 4305-4311.
22. Kotapati, V. B. R., Pachyappan, R., & Mani, K. (2021). Optimizing Serverless Deployment Pipelines with Azure DevOps and GitHub: A Model-Driven Approach. Newark Journal of Human-Centric AI and Robotics Interaction, 1, 71-107.
23. Sudhan, S. K. H. H., & Kumar, S. S. (2016). Gallant Use of Cloud by a Novel Framework of Encrypted Biometric Authentication and Multi Level Data Protection. Indian Journal of Science and Technology, 9, 44.
24. Kumar, R., Al-Turjman, F., Anand, L., Kumar, A., Magesh, S., Vengatesan, K., ... & Rajesh, M. (2021). Genomic sequence analysis of lung infections using artificial intelligence technique. Interdisciplinary Sciences: Computational Life Sciences, 13(2), 192-200.
25. Kashyap, V., Morales, A., & Hongsermeier, T. (2006). On implementing clinical decision support: Achieving scalability and maintainability by combining business rules and ontologies. AMIA Annual Symposium Proceedings, 2006, 414 418. PMCID: PMC1839410

