Real-Time Financial Risk Intelligence Using Secure-by-Design AI in SAP-Enabled Cloud Digital Banking
DOI:
https://doi.org/10.15680/IJCTECE.2024.0706017Keywords:
Digital Banking, Financial Risk Prediction, Secure-by-Design Architecture, SAP Integration, Cloud-Native Machine Learning, AI-Driven Risk Analytics, Fraud Detection, Credit Risk Assessment, Zero Trust Security, Real-Time AnalyticsAbstract
The increasing complexity of digital financial transactions and regulatory requirements has made real-time risk intelligence and end-to-end security critical for modern banking platforms. This paper proposes a secure-by-design, AI-enabled digital banking architecture for real-time financial risk prediction through seamless integration with SAP-based core banking systems and cloud-native machine learning frameworks. Security is embedded across the architecture using zero-trust principles, secure identity and access management, encrypted data streams, and continuous monitoring to ensure data confidentiality, integrity, and regulatory compliance. Transactional and operational data from SAP systems are ingested through secure event-driven pipelines and analyzed using low-latency predictive models for fraud detection, credit risk assessment, and anomaly identification. Cloud-native machine learning services, containerized microservices, and automated MLOps pipelines enable scalable model training, deployment, and continuous learning. The proposed architecture supports hybrid and multi-cloud environments, ensuring high availability, resilience, and fault tolerance. Experimental analysis demonstrates improved risk prediction accuracy, reduced decision latency, and enhanced security posture compared to traditional centralized banking systems. The framework serves as a reference model for next-generation digital banking solutions requiring secure, intelligent, and real-time financial risk management.
References
1. Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications.
2. Haque, M. R., & Mainul, M. (2023). Detecting Tax Evasion and Financial Crimes in The United States Using Advanced Data Mining Technique. Business and Social Sciences, 1(1), 1-11.
3. Malarkodi, K. P., Sugumar, R., Baswaraj, D., Hasan, A., & Kousalya, A. (2023, March). Cyber Physical Systems: Security Technologies, Application and Defense. In 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS) (Vol. 1, pp. 2536-2546). IEEE.
4. Nagarajan, G. (2022). Advanced AI–Cloud Neural Network Systems with Intelligent Caching for Predictive Analytics and Risk Mitigation in Project Management. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 5(6), 7774-7781.
5. Sharma, A., Kabade, S., & Kagalkar, A. (2024). AI-Driven and Cloud-Enabled System for Automated Reconciliation and Regulatory Compliance in Pension Fund Management. International Journal of Emerging Research in Engineering and Technology, 5(2), 65-73.
6. Venkatachalam, D., Paul, D., & Selvaraj, A. (2022). AI/ML powered predictive analytics in cloud-based enterprise systems: A framework for scalable data-driven decision making. Journal of Artificial Intelligence Research, 2(2), 142–182.
7. HV, M. S., & Kumar, S. S. (2024). Fusion Based Depression Detection through Artificial Intelligence using Electroencephalogram (EEG). Fusion: Practice & Applications, 14(2).
8. Adari, V. K. (2020). Intelligent Care at Scale AI-Powered Operations Transforming Hospital Efficiency. International Journal of Engineering & Extended Technologies Research (IJEETR), 2(3), 1240-1249.
9. Sasidevi, J., Sugumar, R., & Priya, P. S. (2017). A Cost-Effective Privacy Preserving Using Anonymization Based Hybrid Bat Algorithm With Simulated Annealing Approach For Intermediate Data Sets Over Cloud Computing. International Journal of Computational Research and Development, 2(2), 173-181.
10. Kumar, R. K. (2023). AI‑integrated cloud‑native management model for security‑focused banking and network transformation projects. International Journal of Research Publications in Engineering, Technology and Management, 6(5), 9321–9329. https://doi.org/10.15662/IJRPETM.2023.0605006
11. Vasugi, T. (2022). AI-Enabled Cloud Architecture for Banking ERP Systems with Intelligent Data Storage and Automation using SAP. International Journal of Engineering & Extended Technologies Research (IJEETR), 4(1), 4319-4325.
12. Kumar, R., Al-Turjman, F., Anand, L., Kumar, A., Magesh, S., Vengatesan, K., ... & Rajesh, M. (2021). Genomic sequence analysis of lung infections using artificial intelligence technique. Interdisciplinary Sciences: Computational Life Sciences, 13(2), 192-200.
13. Kanumarlapudi, P. K., Peram, S. R., & Kakulavaram, S. R. (2024). Evaluating Cyber Security Solutions through the GRA Approach: A Comparative Study of Antivirus Applications. International Journal of Computer Engineering and Technology (IJCET), 15(4), 1021-1040.
14. Navandar, P. (2022). The Evolution from Physical Protection to Cyber Defense. International Journal of Computer Technology and Electronics Communication, 5(5), 5730-5752.
15. Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems. MIS Quarterly.
16. Christadoss, J., & Mani, K. (2024). AI-Based Automated Load Testing and Resource Scaling in Cloud Environments Using Self-Learning Agents. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 6(1), 604-618.
17. Vimal Raja, G. (2021). Mining Customer Sentiments from Financial Feedback and Reviews using Data Mining Algorithms. International Journal of Innovative Research in Computer and Communication Engineering, 9(12), 14705-14710.
18. Kusumba, S. (2023). A Unified Data Strategy and Architecture for Financial Mastery: AI, Cloud, and Business Intelligence in Healthcare. International Journal of Computer Technology and Electronics Communication, 6(3), 6974-6981.
19. Chandra Sekhar Oleti, " Real-Time Feature Engineering and Model Serving Architecture using Databricks Delta Live Tables" International Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 9, Issue 6, pp.746-758, November-December-2023. Available at doi : https://doi.org/10.32628/CSEIT23906203
20. Binu, C. T., Kumar, S. S., Rubini, P., & Sudhakar, K. (2024). Enhancing Cloud Security through Machine Learning-Based Threat Prevention and Monitoring: The Development and Evaluation of the PBPM Framework. https://www.researchgate.net/profile/Binu-C-T/publication/383037713_Enhancing_Cloud_Security_through_Machine_Learning-Based_Threat_Prevention_and_Monitoring_The_Development_and_Evaluation_of_the_PBPM_Framework/links/66b99cfb299c327096c1774a/Enhancing-Cloud-Security-through-Machine-Learning-Based-Threat-Prevention-and-Monitoring-The-Development-and-Evaluation-of-the-PBPM-Framework.pdf
21. Gujjala, Praveen Kumar Reddy. (2023). Autonomous Healthcare Diagnostics : A MultiModal AI Framework Using AWS SageMaker, Lambda, and Deep Learning Orchestration for Real-Time Medical Image Analysis. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 760-772. 10.32628/CSEIT23564527.
22. Meka, S. (2022). Streamlining Financial Operations: Developing Multi-Interface Contract Transfer Systems for Efficiency and Security. International Journal of Computer Technology and Electronics Communication, 5(2), 4821-4829.
23. Pachyappan, R., Vijayaboopathy, V., & Paul, D. (2022). Enhanced Security and Scalability in Cloud Architectures Using AWS KMS and Lambda Authorizers: A Novel Framework. Newark Journal of Human-Centric AI and Robotics Interaction, 2, 87-119.
24. Rajurkar, P. (2024). Integrating AI in Air Quality Control Systems in Petrochemical and Chemical Manufacturing Facilities. International Journal of Innovative Research of Science, Engineering and Technology, 13(10), 17869 - 17873.
25. Mani, R. (2024). Smart Resource Management in SAP HANA: A Comprehensive Guide to Workload Classes, Admission Control, and System Optimization through Memory, CPU, and Request Handling Limits. International Journal of Research and Applied Innovations, 7(5), 11388-11398.
26. Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting & Social Change.

