Network Slicing and its Testing in 5G Networks
DOI:
https://doi.org/10.15680/IJCTECE.2023.0606020Keywords:
Network Slicing, 5G, Radio Access Network, Flexibility, TestingAbstract
Network slicing is a groundbreaking technology in the realm of 5G networks, enabling the creation of multiple virtual networks on a shared physical infrastructure. This paper delves into the intricate architecture of network slicing, highlighting its ability to provide tailored network services for diverse applications such as enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). By leveraging software-defined networking (SDN) and network function virtualization (NFV), network slicing offers unprecedented customization, isolation, scalability, and cost efficiency [1].
However, the implementation of network slicing is not without its challenges. The complexity of managing multiple slices, ensuring interoperability, maintaining security, and delivering consistent performance are significant hurdles that need to be addressed. This paper explores these challenges in detail and presents various testing methodologies and tools designed to validate the functionality, performance, and security of network slices [2]. Through a comprehensive review of current advancements and testing strategies, this research aims to provide a thorough understanding of network slicing's role in the 5G ecosystem. The insights gained from this study will be invaluable for network operators, service providers, and researchers working towards the successful deployment and optimization of 5G networks [3]. Additionally, the paper investigates the revenue potential of network slicing and the applications that originate from this concept, providing insights from the network operator's perspective. Furthermore, the paper presents a comprehensive testing framework to ensure the proper functioning and performance of network slicing in 5G networks, addressing challenges such as efficient resource allocation, slice management and orchestration, and seamless mobility between slice
References
1. He Q, et al. Network slicing to enable resilience and high availability in 5G mobile telecommunications. MATEC Web of Conferences. 2018;246:03028. doi:10.1051/matecconf/201824603028.
2. Cunha VA, et al. Network slicing security: Challenges and directions. Internet Technology Letters. 2019;2(5):e125. doi:10.1002/itl2.125.
3. Rost P, et al. Network slicing to enable scalability and flexibility in 5G mobile networks. IEEE Communications Magazine. 2017;55(5):72-79. doi:10.1109/mcom.2017.1600920.
4. Rost P, et al. Network slicing to enable scalability and flexibility in 5G mobile networks. arXiv Preprint arXiv:1704.02129.2017. doi:10.48550/arxiv.1704.02129.
5. Li Q, Wu G, Papathanassiou A, Udayan M. An end-to- end network slicing framework for 5G wireless communication systems. arXiv Preprint arXiv:1608.07327.2016. doi:10.48550/arxiv.1608.07327.
6. Rost P, et al. Network slicing to enable scalability and flexibility in 5G mobile networks. arXiv Preprint arXiv:1704.02129.2017. doi:10.48550/arxiv.1704.02129.
7. Taleb T, Mada BE, Corici M, Nakao A, Flinck H. PERMIT: Network slicing for personalized 5G mobile telecommunications. IEEE Communications Magazine. 2017;55(5):88-93. doi:10.1109/mcom.2017.1600947.
8. Foukas X, Patounas G, Elmokashfi A, Marina MK. Network slicing in 5G: Survey and challenges. IEEE Communications Magazine. 2017;55(5):94-100. doi:10.1109/mcom.2017.1600951.
9. Budhdev N, Joshi RK, Kannan PG, Chan MC, Mitra T. Slicing 5G fronthaul networks using programmable switches. Proceedings of the 2020 ACM SIGCOMM Conference on Emerging Networking Experiments and Technologies (CoNEXT). 2020.
doi:10.1145/3386367.3431668.
10. Rodriguez VQ, Guillemin F, Boubendir A. 5G E2E network slicing management with ONAP. IEEE International Conference on Information and Communication Networks (ICIN). 2020.
doi:10.1109/icin48450.2020.9059507.
11. Seetharaman S, Krishnaswamy D. A programmable and adaptive framework for 5G network slicing. 5G World Forum (5GWF). 2019. doi:10.1109/5gwf.2019.8911704.
12. Kukliński S, et al. Network slicing architecture. Internet- Draft. 2017. [Online]. Available from: https://rfcs.web.fc2.com/draft-geng-netslices- architecture-02.html.
13. Galis A, Makhijani K. Network slicing landscape: A holistic architectural approach, orchestration and management with applicability in mobile and fixed networks and clouds. IEEE Communications Standards Magazine. 2018.
14. Mena MP, Papageorgiou A, Ochoa-Aday L, Siddiqui S, Baldoni G. Enhancing the performance of 5G slicing operations via multi-tier orchestration. IEEE International Conference on Information and Communication Networks (ICIN). 2020.
doi:10.1109/icin48450.2020.9059546.
15. Ordoñez-Lucena J, Ameigeiras P, López D, Ramos- Muñoz JJ, Lorca J, Folgueira J. Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges. IEEE Communications Magazine. 2017;55(5):80-87. doi:10.1109/mcom.2017.1600935.
16. Rahman A, Aranda PN, Lynch P. Network virtualization research challenges. RFC 8568. 2019.
doi:10.17487/rfc8568.
17. An X, et al. End-to-end architecture modularization and slicing for next-generation networks. arXiv Preprint arXiv:1611.07908. 2016.
doi:10.48550/arxiv.1611.07908.
18. Gonzalez AJ, et al. The isolation concept in the 5G network slicing. European Conference on Networks and Communications (EuCNC). 2020.
doi:10.1109/eucnc48522.2020.9200939.
19. Sharma S, Miller RB, Francini A. A cloud-native approach to 5G network slicing. IEEE Communications Magazine. 2017;55(5):120-127. doi:10.1109/mcom.2017.1600942.
20. Jammal M, Singh T, Shami A, Asal R, Li Y. Software- defined networking: State of the art and research challenges. arXiv Preprint arXiv:1406.0124. 2014. doi:10.48550/arxiv.1406.0124.
21. Aslanpour MS, Gill SS, Toosi AN. Performance evaluation metrics for cloud, fog, and edge computing: A review, taxonomy, benchmarks, and standards for future research. Internet of Things. 2020;11:100273. doi:10.1016/j.iot.2020.100273.
22. Chai H. Traffic-aware threshold adjustment for NFV scaling using DDPG. arXiv Preprint arXiv:1811.08567. 2018. doi:10.48550/arxiv.1811.08567.
23. Tonini F, Natalino C, Furdek M, Raffaelli C, Monti P. Network slicing automation: Challenges and benefits. International Conference on Optical Network Design and Modeling (ONDM). 2020.
doi:10.23919/ondm48393.2020.9133004.
24. Wu W, et al. AI-native network slicing for 6G networks. arXiv Preprint arXiv:2105.08576. 2021.
doi:10.48550/arxiv.2105.08576.
25. Esmaeily A, Kralevska K. Small-scale 5G testbeds for network slicing deployment: A systematic review. arXiv Preprint arXiv:2104.15000. 2021.
doi:10.48550/arxiv.2104.15000.
26. Chatras B, Kwong UST, Bihannic N. NFV enabling network slicing for 5G. IEEE International Conference on Intelligence in Next Generation Networks (ICIN). 2017. doi:10.1109/icin.2017.7899415.
27. Gebremariam AA, Usman M, Du P, Nakao A, Granelli
F. Towards E2E slicing in 5G: A spectrum slicing testbed and its extension to the packet core. IEEE Global Communications Conference Workshops (GLOBECOMW).2017.
doi:10.1109/glocomw.2017.8269212.
28. Esmaeily A, Kralevska K, Gligoroski D. A cloud-based SDN/NFV testbed for end-to-end network slicing in 4G/5G. arXiv Preprint arXiv:2004.08834. 2020. doi:10.48550/arXiv.2004.08834.
29. Esmaeily A, Kralevska K. Small-scale 5G testbeds for network slicing deployment: A systematic review. arXiv Preprint arXiv:2104.08834. 2021.
doi:10.48550/arxiv.2104.08834.
30. Kafle VP, Fukushima Y, Martínez-Julia P, Miyazawa T. Consideration on automation of 5G network slicing with machine learning. ITU Kaleidoscope: Machine Learning for a 5G Future (ITU-WT). 2018. doi:10.23919/itu- wt.2018.8597639.
31. Job MA. Automating and optimizing software testing using artificial intelligence techniques. International Journal of Advanced Computer Science and Applications. 2021;12(5):71. doi:10.14569/ijacsa.2021.0120571.
32. Sajjad MM, Jayalath D, Tian Y, Bernardos CJ. On session continuation among slices for inter-slice mobility support in 3GPP service-based architecture. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). 2020. doi:10.1109/pimrc48278.2020.9217332.
33. Wahle S, et al. Emerging testing trends and the Panlab enabling infrastructure. IEEE Communications Magazine. 2011;49(3):86-93. doi:10.1109/mcom.2011.5723816.
34. Khan MG, Taheri J, Al-Dulaimy A, Kassler A. PerfSim: A performance simulator for cloud native microservice chains. IEEE Transactions on Cloud Computing. 2021. doi:10.1109/tcc.2021.3135757.
35. Kaur A, Malhotra J. A survey of network simulation tools. Wireless Communication. 2015;6(2):12-17. Available from:
https://www.ciitresearch.org/dl/index.php/wc/article/vie w/WC062015002.
36. Silva ID, et al. Impact of network slicing on 5G radio access networks. European Conference on Networks and Communications (EuCNC). 2016.
doi:10.1109/eucnc.2016.7561023.
37. Chen Q, Wang X, Lv Y. An overview of 5G network slicing architecture. AIP Conference Proceedings. 2018;1976(1):020017. doi:10.1063/1.5038976.
38. Chochliouros IP, Spiliopoulou AS, Lazaridis PI, Dardamanis A, Zaharis ZD, Κωστόπουλος Α. Dynamic network slicing: Challenges and opportunities. IFIP Advances in Information and Communication Technology. Springer; 2020:47. doi:10.1007/978-3-030-
49190-1_5.
39. Ordoñez-Lucena J, et al. The creation phase in network slicing: From a service order to an operative network slice. arXiv Preprint arXiv:1804.09160. 2018. doi:10.48550/arXiv.1804.09160.
40. He Q, Ju Y, Wang J, Zhao G, Qin H, Zhao K, Zhou Y, Li M, Dong Q. Network slicing to enable resilience and high availability in 5G mobile telecommunications. MATEC Web of Conferences. 2018;246:03028. doi:10.1051/matecconf/201824603028.
41. Cavazos J. 5G testing: What is 5G network slicing? Keysight Blogs. 2020 Apr 30. Available from: https://www.keysight.com/blogs/en/inds/2020/04/30/5g-testing-what-is-5g-network-slicing.

